954 resultados para HIGH-FIELD MAGNETIZATION
Resumo:
Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
We have carried out a systematic analysis of the transverse dipole spin response of a large-size quantum dot within time-dependent current density functional theory. Results for magnetic fields corresponding to integer filling factors are reported, as well as a comparison with the longitudinal dipole spin response. As in the two-dimensional electron gas, the spin response at high-spin magnetization is dominated by a low-energy transverse mode.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
Current limitations of coronary magnetic resonance angiography (MRA) include a suboptimal signal-to-noise ratio (SNR), which limits spatial resolution and the ability to visualize distal and branch vessel coronary segments. Improved SNR is expected at higher field strengths, which may provide improved spatial resolution. However, a number of potential adverse effects on image quality have been reported at higher field strengths. The limited availability of high-field systems equipped with cardiac-specific hardware and software has previously precluded successful in vivo human high-field coronary MRA data acquisition. In the present study we investigated the feasibility of human coronary MRA at 3.0 T in vivo. The first results obtained in nine healthy adult subjects are presented.
Resumo:
We have observed a type of giant magnetoresistance (GMR) in magnetic granular Co10Cu90 alloys. The asymmetric GMR depends strongly on the size of magnetic Co particles, which exhibit superparamagnetic behavior at given measured temperature. The asymmetric GMR points to a metastable state that develops when the sample is field-cooled, which is lost after recycling. We propose that high-field cooling produces more effective parallel alignment of small unblocked Co particle moments and interfacial magnetizations, which contributes to the further decrease of the resistance in comparison with the samples zero-field-cooled, and then applied to the same field.
Resumo:
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive epsilon Nd(i) values in the range of +4.87 to +6.09, approaching the lower limit of MORB-like source, and relatively high ((207)Pb/(204)Pb)(i) (15.57-15.663) at low ((206)Pb/(204)Pb)(i) (18.13-18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low eNdi value of -2.61 and is slightly more Pb radiogenic ((207)Pb/(204)Pb)(i) (15.64) and ((206)Pb/(204)Pb)(i) (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata-Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early-Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc-trench system collided with the Rhodope in the Late Jurassic times. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The prognostic significance of magnetic resonance imaging (MRI) in the neonatal period was studied prospectively in 43 term infants with perinatal asphyxia. MRI was performed between 1 and 14 days after birth with a high field system (2.35 Tesla). Neurodevelopmental outcome was assessed by a standardized neurological examination and the Griffiths developmental test at a mean age of 18.9 months. The predictive value of the various MRI patterns was as follows: Severe diffuse brain injury (pattern AII+III; n = 7) and lesions of thalamus and basal ganglia (pattern C; n = 5) were strongly associated with poor outcome and greatly reduced head growth. Mild diffuse brain injury (pattern AI; n = 7), parasagittal lesions (B; n = 7), periventricular hyperintensity (D; n = 2), focal brain necrosis and hemorrhage (E; n = 3) and periventricular hypointense stripes (on T2-weighted images; F; n = 3) led in one third of the infants to minor neurological disturbances and mild developmental delay. Infants with normal MRI findings (G; n = 9) developed normally with the exception of one infant who was mildly delayed at 18 months. The results indicate that MRI examination during the first two weeks of life is of prognostic significance in term infants suffering from perinatal asphyxia. Severe hypoxic-ischemic brain lesions were associated highly significantly with poor neuro-developmental outcome, whereas infants with inconspicuous MRI developed normally.
Resumo:
In recent years, considerable research has focused on the biological effect of endocrine-disrupting chemicals. Bisphenol A (BPA) has been implicated as an endocrine-disrupting chemical (EDC) due to its ability to mimic the action of endogenous estrogenic hormones. The aim of this study was to assess the effect of perinatal exposure to BPA on cerebral structural development and metabolism after birth. BPA (1mg/l) was administered in the drinking water of pregnant dams from day 6 of gestation until pup weaning. At postnatal day 20, in vivo metabolite concentrations in the rat pup hippocampus were measured using high field proton magnetic resonance spectroscopy. Further, brain was assessed histologically for growth, gross morphology, glial and neuronal development and extent of myelination. Localized proton magnetic resonance spectroscopy ((1)H MRS) showed in the BPA-exposed rat a significant increase in glutamate concentration in the hippocampus as well as in the Glu/Asp ratio. Interestingly these two metabolites are metabolically linked together in the malate-aspartate metabolic shuttle. Quantitative histological analysis revealed that the density of NeuN-positive neurons in the hippocampus was decreased in the BPA-treated offspring when compared to controls. Conversely, the density of GFAP-positive astrocytes in the cingulum was increased in BPA-treated offspring. In conclusion, exposure to low-dose BPA during gestation and lactation leads to significant changes in the Glu/Asp ratio in the hippocampus, which may reflect impaired mitochondrial function and also result in neuronal and glial developmental alterations.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Studying body representations in the brain helps us to understand how we humans relate to our own bodies. The in vivo mapping of the somatosensory cortex, where these representations are found, is greatly facilitated by the high spatial resolution and high sensitivity to brain activation available at ultra-high field. In this study, the use of different stimulus types for somatotopic mapping of the digits at ultra-high field, specifically manual stroking and mechanical stimulation, was compared in terms of sensitivity and specificity of the brain responses. Larger positive responses in digit regions of interest were found for manual stroking than for mechanical stimulation, both in terms of average and maximum t-value and in terms of number of voxels with significant responses to the tactile stimulation. Responses to manual stroking were higher throughout the entire post-central sulcus, but the difference was especially large on its posterior wall, i.e. in Brodmann area 2. During mechanical stimulation, cross-digit responses were more negative than during manual stroking, possibly caused by a faster habituation to the stimulus. These differences indicate that manual stroking is a highly suitable stimulus for fast somatotopic mapping procedures, especially if Brodmann area 2 is of interest.
Resumo:
N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 °C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2-N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it=6.4×10 10 eV -1 cm -2. High field effect mobility, 25 cm 2/V s for electrons and 1.1 cm 2/V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously.
Resumo:
Although body ownership-i.e. the feeling that our bodies belong to us-modulates activity within the primary somatosensory cortex (S1), it is still unknown whether this modulation occurs within a somatotopically defined portion of S1. We induced an illusory feeling of ownership for another person's finger by asking participants to hold their palm against another person's palm and to stroke the two joined index fingers with the index and thumb of their other hand. This illusion (numbness illusion) does not occur if the stroking is performed asynchronously or by the other person. We combined this somatosensory paradigm with ultra-high field functional magnetic resonance imaging finger mapping to study whether illusory body ownership modulates activity within different finger-specific areas of S1. The results revealed that the numbness illusion is associated with activity in Brodmann area (BA) 1 within the representation of the finger stroking the other person's finger and in BA 2 contralateral to the stroked finger. These results show that changes in bodily experience modulate the activity within certain subregions of S1, with a different finger-topographical selectivity between the representations of the stroking and of the stroked hand, and reveal that the high degree of somatosensory specialization in S1 extends to bodily self-consciousness.
Resumo:
Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.