971 resultados para HEAT SHOCK PROTEINS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated.2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii.3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h.4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals.
Resumo:
Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase (gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30degreesC to 45degreesC). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans-acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.
Resumo:
This study evaluated the expression of heat shock protein 70 kD (hsp70) in broiler chicken embryos subjected to cold (Experiment 1) or high incubation temperature (Experiment 11). In each experiment, fertile eggs were distributed in three incubators kept at 37.8degreesC. At day 13 (D13), D16, and D19 of incubation, the embryos were subjected to acute cold (32degreesC) or heat (40degreesC) for 4-6 hr. Immediately after cold or heat exposure, samples from the liver, heart, breast muscle, brain, and lungs of 40 embryos were taken per age and treatment (control or stressed embryos), A tissue pool from 10 embryos was used as 1 replication. The levels of hsp70 in each tissue sample was quantified by Western blot analysis. The data were analyzed in a 3 x 2 factorial arrangement of treatments with four replications. hsp70 was detected in all embryo tissues, and the brain contained 2- to 5-times more hsp70 protein compared to the other tissues in either cold or heat stressed embryos. hsp70 increases were observed in the heart and breast muscle of cold stressed embryos at D16 and D19, respectively. Heat stressed embryos showed an increase of hsp70 in the heart at D13 and D19, and in the lung at D19 of incubation. Younger embryos had higher hsp70 synthesis than older embryos, irrespective of the type of thermal stressor. The results indicate that the expression of hsp70 in broiler chicken embryos is affected by cold and heat distress, and is tissue- and age-dependent. (C) 2004 Wiley-Liss, Inc.
Resumo:
Background: the purpose this study was to investigate the relationship of anti-myosin and anti-heat shock protein immunoglobulin G (IgG) serum antibodies to the original heart disease of cardiac transplant recipients, and also to rejection and patient survival after cardiac transplantation.Methods: Anti-myosin and anti-heat shock protein (anti-hsp) IgG antibodies were evaluated in pre-transplant sera from 41 adult cardiac allograft recipients and in sequential post-transplant serum samples from 11 recipients, collected at the time of routine endomyocardial biopsies during the first 6 months after transplantation. In addition, the levels of these antibodies were determined from the sera of 28 healthy blood donors.Results: Higher anti-myosin antibody levels were observed in pre-transplant sera than in sera from normal controls. Moreover, patients with chronic Chagas heart disease showed higher anti-myosin levels than patients with ischemic heart disease, and also higher levels, although not statistically significant, than patients with dilated cardiomyopathy. Higher anti-hsp levels were also observed in patients compared with healthy controls, but no significant differences were detected among,the different types of heart diseases. Higher pre-transplant anti-myosin, but not anti-hsp, levels were associated with lower 2-year post-transplant survival. In the post-transplant period, higher anti-myosin IgG levels were detected in sera collected during acute rejection than in sera collected during the rejection-free period, whereas anti-hsp IgG levels showed no difference between these periods.Conclusions: the present findings are of interest for post-transplant management and, in addition, suggest a pathogenic role for anti-myosin antibodies in cardiac transplant rejection, as has been proposed in experimental models of cardiac transplantation.
Resumo:
Background: Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods: Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results: Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion: 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs. © 2009 Ishikawa et al; licensee BioMed Central Ltd.
Resumo:
Obese Black women are at increased risk for development of gestational diabetes mellitus and have worse perinatal outcomes than do obese women of other ethnicities. Since hsp72 has been associated with the regulation of obesity-induced insulin resistance, we evaluated associations between glucose ingestion, hsp72 release and insulin production in Black pregnant women. Specifically, the effect of a 50-g glucose challenge test (GCT) on heat shock protein and insulin levels in the circulation 1 h later was evaluated. Hsp27 and hsp60 levels remained unchanged. In contrast, serum levels of hsp72 markedly increased after glucose ingestion (p = 0.0054). Further analysis revealed that this increase was limited to women who were not obese (body mass index <30). Insulin levels pre-GCT were positively correlated with body mass index (p = 0.0189). Median insulin concentrations also increased post GCT in non-obese women but remained almost unchanged in obese women. Post-GCT serum hsp72 concentrations were inversely correlated with post GCT insulin concentrations (p = 0.0111). These observations suggest that glucose intake during gestation in Black women rapidly leads to an elevation in circulating hsp72 only in non-obese Black women. The release of hsp72 may regulate the extent of insulin production in response to a glucose challenge and, thereby, protect the mother and/or fetus from development of hyperglycemia, hyperinsulinemia, and/or immune system alterations. © 2013 Cell Stress Society International.
Resumo:
Preeclampsia (PE), a specific syndrome of pregnancy, can be classified into early and late onset, depending on whether clinical manifestations occur before or after 34 weeks' gestation. We determined whether plasma concentrations of Hsp60 and Hsp70 were related to circulating cytokine levels, as well as kidney and liver functions, in early- and late-onset PE. Two hundred and thirty-seven preeclamptic women (95 with early- and 142 with late-onset PE) were evaluated. Plasma levels of Hsp60, Hsp70, and their specific antibodies, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1, IL-10, IL-12, and soluble TNF-α-receptor I (sTNFRI) concentrations, were determined by enzyme-linked immunosorbent assay (ELISA). Concentrations of Hsp70, TNF-α, IL-1β, IL-12, and sTNFRI were significantly elevated in patients with early-onset PE compared with women with late-onset PE; IL-10 levels were significantly lower in the early-onset PE group. Concentrations of urea, uric acid, proteinuria, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH) were also significantly higher in early-onset PE. The percentage of infants with intrauterine growth restriction was also significantly higher in women with early-onset PE. There were positive correlations between Hsp70 levels and TNF-α, TNFRI, IL-1β, IL-12, GOT, GPT, LDH, and uric acid concentrations in early-onset PE group. Thus, early-onset PE was associated with greater maternal and fetal impairment. There are differences in pathophysiology between early- and late-onset PE, highlighting by the difference in Hsp70 levels. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Bananas (Musa spp.) are highly perishable fruit of notable economic and nutritional relevance. Because the identification of proteins involved in metabolic pathways could help to extend green-life and improve the quality of the fruit, this study aimed to compare the proteins of banana pulp at the pre-climacteric and climacteric stages. The use of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed 50 differentially expressed proteins, and comparing those proteins to the Mass Spectrometry Protein Sequence Database (MSDB) identified 26 known proteins. Chitinases were the most abundant types of proteins in unripe bananas, and two isoforms in the ripe fruit have been implicated in the stress/defense response. In this regard, three heat shock proteins and isoflavone reductase were also abundant at the climacteric stage. Concerning fruit quality, pectate lyase, malate dehydrogenase, and starch phosphorylase accumulated during ripening. In addition to the ethylene formation enzyme amino cyclo carboxylic acid oxidase, the accumulation of S-adenosyl-L-homocysteine hydrolase was needed because of the increased ethylene synthesis and DNA methylation that occurred in ripening bananas. Differential analysis provided information on the ripening-associated changes that occurred in proteins involved in banana flavor, texture, defense, synthesis of ethylene, regulation of expression, and protein folding, and this analysis validated previous data on the transcripts during ripening. In this regard, the differential proteomics of fruit pulp enlarged our understanding of the process of banana ripening. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy.
Resumo:
Abstract Background Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs.