884 resultados para HALF-LIVES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical synapses formed of the gap junction protein Cx36 show a great deal of functional plasticity, much dependent on changes in phosphorylation state of the connexin. However, gap junction turnover may also be important for regulating cell-cell communication, and turnover rates of Cx36 have not been studied. Connexins have relatively fast turnover rates, with short half-lives measured to be 1.5 to 3.5 hours in pulse-chase analyses of connexins (Cx26 and Cx43) in tissue culture cells and whole organs. We utilized HaloTag technology to study the turnover rate of Cx36 in transiently transfected HeLa cells. The HaloTag protein forms irreversible covalent bonds with chloroalkane ligands, allowing pulse-chase experiments to be performed very specifically. The HaloTag open reading frame was inserted into an internal site in the C-terminus of Cx36 designed not to disrupt the regulatory phosphorylation sites and not to block the C-terminal PDZ interaction motif. Functional properties of Cx36-Halo were assessed by Neurobiotin tracer coupling, live cell imaging, and immunostaining. For the pulse-chase study, transiently transfected HeLa cells were pulse labeled with Oregon Green (OG) HaloTag ligand and chase labeled at various times with tetramethylrhodamine (TMR) HaloTag ligand. Cx36-Halo formed large junctional plaques at sites of contact between transfected HeLa cells and was also contained in a large number of intracellular vesicles. The Cx36-Halo transfected HeLa cells supported Neurobiotin tracer coupling that was regulated by activation and inhibition of PKA in the same manner as wild-type Cx36 transfected cells. In the pulse-chase study, junctional protein labeled with the pulse ligand (OG) was gradually replaced by newly synthesized Cx36 labeled with the chase ligand (TMR). The half-life for turnover of protein in junctional plaques was 2.8 hours. Treatment of the pulse-labeled cells with Brefeldin A (BFA) prevented the addition of new connexins to junctional plaques, suggesting that the assembly of Cx36 into gap junctions involves the traditional ER-Golgi-TGN-plasma membrane pathway. In conclusion, Cx36-Halo is functional and has a turnover rate in HeLa cells similar to that of other connexins that have been studied. This turnover rate is likely too slow to contribute substantially to short-term changes in coupling of neurons driven by transmitters such as dopamine, which take minutes to achieve. However, turnover may contribute to longer-term changes in coupling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major portion of this thesis work was dedicated to study the nature and significance of spliced introns. The initial work was focused on studying the IVS1$\sb{\rm C\beta 1}$ intron from a T-cell receptor (TCR)-$\beta$ gene. Compared to an intron lariat control from adenovirus pre-mRNA that was spliced in vitro, IVS1$\sb{\rm C\beta 1}$ was debranched less efficiently by HeLa S100 extracts, although IVS1$\sb{\rm C\beta 1}$ also used the consensus branchpoint in vivo. Subcellular-fractionation analysis showed that most IVS1$\sb{\rm C\beta 1}$ lariats cofractionated with pre-mRNA in the nucleus, consistent with the possibility that intron degradation releases splicing factors which will be available for further rounds of splicing. The half-life of IVS1$\sb{\rm C\beta 1}$ from the endogenous TCR-$\beta$ gene was measured using the general transcription inhibitor actinomycin D to be about $\sim$15 min, which was similar to that of unstable mRNAs such as c-myc mRNA.^ The general transcription inhibitor DRB was also used for intron stability analysis. Unexpectedly, DRB decreased intron and pre-mRNA levels only initially, it later increased the levels of intron-containing RNAs. Inhibition of transcription initiation appeared to be the major early effect (the reduction phase); whereas enhanced premature transcription termination was dominant later (the induction phase).^ Having established the procedures for studying in vivo spliced introns, this approach was applied to study the mechanism of nonsense-mediated downregulation (NMD), a phenomena in which premature termination codons (PTCs) decrease the levels of mRNAs. In this study, the novel intron-oriented approach was applied to study the mechanism of NMD. The levels of spliced introns immediately upstream and downstream of a PTC-bearing exon in a TCR-$\beta$ gene were identified and analyzed along with their pre-mRNA. Although PTC reduced the mRNA levels by 4 to 9 fold, the steady-state levels of spliced introns and the pre-mRNA-to-intron ratios were not significantly altered, indicating that the PTC did not significantly inhibit TCR-$\beta$ RNA splicing. Consistent with this conclusion, the half-lives of the PTC$\sp+$ and PTC$\sp-$ pre-mRNA were similar. The protein synthesis inhibitor cyclohexmide (CHX) upregulated the levels of the PTC$\sp+$ mRNA over 10 fold without affecting the levels of the spliced introns, suggesting that the reversal effect of CHX was through stabilization, not production. These results indicated that inhibition of splicing could not be the major mechanism for the NMD pathway of the TCR-$\beta$ gene, instead, suggesting that mRNA destabilization may be more important. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fission product (90Sr-90Y, 137Cs, total beta) and 21OPb-210Po activities were measured in core samples from the temperate vernagtferner (3150 m altitude, Oetztal Alps, Austria). The results show that the investigated fission products are transported with water resulting from melting processes, and are sorbed on dust or dirt horizons. These products are, therefore, not suited for dating temperate glaciers. 210Pb is also transported with water and displaced from its original deposition. However, despite large fluctuations, the specific activity of 210Pb decreases with depth, and can be used to estimate accumulation rates and the age of the ice. The average annual accumulation rate amounts to about 80 cm water equivalent, and the deepest sample (81 m i.e. ab. 65 m w. e.) was deposited in the beginning of this century. These results agree with data obtained from other observations on this glacier and show that the 210Pb_method is suitable to date temperate glaciers, if the ice cores cover a time interval of about 100 years (i.e. ab. 4 half-lives of 210Pb). The surface activity of 210Pb was found to be 5 ± 1 dpm per kg of ice in agreement with other locations in the Alps and with measurements of fresh snow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porewaters in site 680 Peru Margin sediments contain dissolved sulfide over a depth of approximately 70 m which, at a sedimentation rate of 0.005 cm/yr, gives a sediment exposure time to dissolved sulfide of about 1.4 Myr. Reactions with dissolved sulfide cause the site 680 sediments to show a progressive decrease in a poorly-reactive silicate iron fraction, defined as the difference between iron extracted by dithionite (FeD) at room temperature and that extracted by boiling concentrated HCl (FeH), normalised to the total iron content (FeT). Straight line plots are obtained for ln[(FeH - FeD)/FeT] against time of burial, from which a first order rate constant of 0.29 1/Myr (equivalent to a half-life of 2.4 Myr) can be derived for the sulfidation of this silicate iron. Comparable half-lives are also found for the same poorly-reactive iron fraction in the nearby site 681 and 684 sediments. This silicate Fe fraction comprises 0.8-1.0% Fe, only 30-60% of which reacts even with 1.5-3 million years exposure to dissolved sulfide. Diagenetic models based on porewater concentrations of sulfate and sulfide, and solid phase iron contents, at site 680 are consistent in indicating that this poorly-reactive iron fraction is only sulfidized on a million year time scale. Silicate iron not extracted by HCl can be regarded as unreactive towards dissolved sulfide on the time scales encountered in marine sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Persistent organochlorine (OC) contaminants (PCBs, DDTs, chlordanes (CHLs), dieldrin, hexachlorocyclohexanes (HCHs), chlorobenzenes (CBzs)) were determined in adipose tissue of 92 polar bears (Ursus maritimus) sampled between 1999 and 2001 in central East Greenland (69°00'N to 74°00'N). OC data were presented from subadults (S: females: <5 years and males: <6 years), adult females (F: >=5 years) and adult males (M: >=6 years). Summed chlorobiphenyl (SumCBs) concentrations (41 congeners including co-eluters), SumCHLs and SumDDTs were the dominant classes of OCs. SumCBs concentrations were found to be 6470, 8240 and 9100 ng/g lipid weight (lw) i subadults, adult females and adult males, respectively. The corresponding figures were: 2010 (S), 2220 (F) and 1710 (M) ng/ g lw for SumCHLs and 462 (S), 462 (F) and 559 (M) ng/g lw for SumDDTs. The dominant CB congeners were CB153 (32.3%), CB180 (21.4%), CB170 (12.2%) and CB138 (11.0%). The metabolite p,p'-DDE (88.2%) dominated the SumDDTs, while oxychlordane was the dominant (57.1%) CHL-related compound. Concentrations of SumCBs, SumCBzs, SumDDTs, mirex and dieldrin were highest in adult males, whereas concentrations of SumHCHs were lower than in adult females but not than those in subadults. Adult females had the lowest concentrations of SumCBzs, mirex and dieldrin. Concentrations of SumCHLs were lowest in adult males, intermediate in subadults and highest in adult females. SumCB, SumHCH and SumCHL concentrations showed high seasonal variability in adult females but remained relatively constant in adult males and subadults. In general, the OC levels in females appeared to be highest in March and lowest in January or September. Concentrations of SumCBzs and dieldrin showed seasonal variability in all three groups, with a maximum in March in adult females. SumCBz concentrations in adult males and subadults of both sexes peaked in April-July, and dieldrin concentrations peaked in April-July in subadults, but not until August in adult males. SumDDT concentrations increased from January to a maximum in April-July for subadults and in August for adults. Temporal trends within the last decade were examined by comparing the present data to the concentrations reported in samples from 1990 from the same region. SumCB, p,p'-DDE and SumHCH concentrations in 1999-2001 were 22.1%, 66.3% and 39.3% lower than the 1990 concentrations, respectively. in contrast, SumCHL and dieldrin concentrations showed differences amongst sex and age groups in the temporal trends, where present concentrations are between 24.4% to 69.3% and 27.0% to 69.0% lower, respectively, relative to the 1990 levels. However, power analysis suggested that firm conclusions could not be drawn regarding the general time trend based on these two sampling periods. The range of half-lives of the various OC classes were estimated to lie between 4.5 and 20.6 years depending on the age and sex groups considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Archaea represent some of the most ancient organisms on earth, and they have relatively uncharacterized DNA repair processes. We now show, using an in vitro assay, that extracts of two Crenarchaeota (Sulfolobus acidocaldarius and Pyrobaculum islandicum) and two Euryarchaeota (Pyrococcus furiosus and Thermococcus litoralis) contain the DNA repair protein O6-alkylguanine-DNA alkyltransferase (ATase). The ATase activities found in the archaea were extremely thermostable, with half-lives at 80°C ranging from 0.5 hr (S. acidocaldarius) to 13 hr (T. litoralis). The temperature optima of the four proteins ranged from ≈75 to ≈100°C, although activity was seen at 37°C, the temperature optimum of the Escherichia coli and human ATases. In all cases, preincubaton of extracts with a short oligonucleotide containing a single O6-methylguanine residue caused essentially complete loss of ATase activity, suggesting that the alkylphosphotriester-DNA alkyltransferase activity seen in some prokaryotes is not present in Archaea. The ATase from Pyrobaculum islandicum had an apparent molecular mass of 15 kDa, making it the smallest of these proteins so far described. In higher organisms, ATase is responsible for the repair of toxic and mutagenic O6-alkylguanine lesions in alkylated DNA. The presence of ATase in these primitive organisms therefore suggests that endogenous or exogenous exposure to agents that generate appropriate substrates in DNA may be an early event in evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The autocrine/paracrine peptide signaling molecules such as growth factors have many promising biologic activities for clinical applications. However, one cannot expect specific therapeutic effects of the factors administered by ordinary drug delivery systems as they have limited target specificity and short half-lives in vivo. To overcome the difficulties in using growth factors as therapeutic agents, we have produced fusion proteins consisting of growth factor moieties and a collagen-binding domain (CBD) derived from Clostridium histolyticum collagenase. The fusion proteins carrying the epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) at the N terminal of CBD (CBEGF/CBFGF) tightly bound to insoluble collagen and stimulated the growth of BALB/c 3T3 fibroblasts as much as the unfused counterparts. CBEGF, when injected subcutaneously into nude mice, remained at the sites of injection for up to 10 days, whereas EGF was not detectable 24 h after injection. Although CBEGF did not exert a growth-promoting effect in vivo, CBFGF, but not bFGF, strongly stimulated the DNA synthesis in stromal cells at 5 days and 7 days after injection. These results indicate that CBD may be used as an anchoring unit to produce fusion proteins nondiffusible and long-lasting in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies showed that components implicated in pre-rRNA processing, including U3 small nucleolar (sno)RNA, fibrillarin, nucleolin, and proteins B23 and p52, accumulate in perichromosomal regions and in numerous mitotic cytoplasmic particles, termed nucleolus-derived foci (NDF) between early anaphase and late telophase. The latter structures were analyzed for the presence of pre-rRNA by fluorescence in situ hybridization using probes for segments of pre-rRNA with known half-lives. The NDF did not contain the short-lived 5′-external transcribed spacer (ETS) leader segment upstream from the primary processing site in 47S pre-rRNA. However, the NDF contained sequences from the 5′-ETS core, 18S, internal transcribed spacer 1 (ITS1), and 28S segments and also had detectable, but significantly reduced, levels of the 3′-ETS sequence. Northern analyses showed that in mitotic cells, the latter sequences were present predominantly in 45S-46S pre-rRNAs, indicating that high-molecular weight processing intermediates are preserved during mitosis. Two additional essential processing components were also found in the NDF: U8 snoRNA and hPop1 (a protein component of RNase MRP and RNase P). Thus, the NDF appear to be large complexes containing partially processed pre-rRNA associated with processing components in which processing has been significantly suppressed. The NDF may facilitate coordinated assembly of postmitotic nucleoli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into “chromonema” fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332 degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.