988 resultados para HABITAT FRAGMENTATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature.
2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable.
3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation.
4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation.
5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon.
6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature.

2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable.

3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation.

4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation.

5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon.

6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding how habitat fragmentation affects population processes (e.g. dispersal) at different spatial scales is of critical importance to conservation. We assessed the effects of habitat fragmentation on dispersal and regional and fine-scale population structure in a currently widespread and common cooperatively breeding bird species found across south-eastern Australia, the superb fairy-wren Malurus cyaneus. Despite its relative abundance and classification as an urban tolerant species, the superb fairy-wren has declined disproportionately from low tree-cover agricultural landscapes across the Box-Ironbark region of north-central Victoria, Australia. Loss of genetic connectivity and disruption to its complex social system may be associated with the decline of this species from apparently suitable habitat in landscapes with low levels of tree cover. To assess whether reduced structural connectivity has had negative consequences for genetic connectivity in the superb fairy-wren, we used a landscape-scale approach to compare patterns of genetic diversity and gene flow at large (landscape/regional) and fine (site-level) spatial scales. In addition, using genetic distances, for each sex, we tested landscape models of decreased dispersal through treeless areas (isolation-by-resistance) while controlling for the effect of isolation-by-distance. Landscape models indicated that larger-scale gene flow across the Box-Ironbark region was constrained by distance rather than by lack of structural connectivity. Nonetheless, a pattern of isolation-by-resistance for males (the less-dispersive sex) and lower genetic diversity and higher genetic similarity within sites in low-cover fragmented landscapes indicated disruption to fine-scale gene flow mechanisms and/or mating systems. Although loss of structural connectivity did not appear to impede gene flow at larger spatial scales, fragmentation appeared to affect fine-scale population processes (e.g. local gene flow mechanisms and/or mating systems) adversely and may contribute to the decline of superb fairy-wrens in fragmented landscapes in the Box-Ironbark region. © 2012 British Ecological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predictive frameworks for understanding and describing how animals respond to habitat fragmentation, particularly across edges, have been largely restricted to terrestrial systems. Abundances of zooplankton and meiofauna were measured across seagrasssand edges and the patterns compared with predictive models of edge effects. Artificial seagrass patches were placed on bare sand, and zooplankton and meiofauna were sampled with tube traps at five positions (from patch edges: 12, 60 and 130 cm into seagrass; and 12 and 60 cm onto sand). Position effects consisted of the following three general patterns: (1) increases in abundance around the seagrasssand edge (total abundance and cumaceans); (2) declining abundance from seagrass onto sand (calanoid copepods, harpacticoid copepods and amphipods); and (3) increasing abundance from seagrass onto sand (crustacean nauplii and bivalve larvae). The first two patterns are consistent with resource-distribution models, either as higher resources at the confluence of adjacent habitats or supplementation of resources from high-quality to low-quality habitat. The third pattern is consistent with reductions in zooplankton abundance as a consequence of predation or attenuation of currents by seagrass. The results show that predictive models of edge effects can apply to aquatic animals and that edges are important in structuring zooplankton and meiofauna assemblages in seagrass. © 2010 CSIRO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Climate change is expected to increase the frequency and intensity of extreme climatic events, such as severe droughts and intense rainfall periods. We explored how the avifauna of a highly modified region responded to a 13-year drought (the 'Big Dry'), followed by a two-year period of substantially higher than average rainfall (the 'Big Wet'). Location: Temperate woodlands in north central Victoria, Australia. Methods: We used two spatially extensive, long-term survey programmes, each of which was repeated three times: early and late in the Big Dry, and in the Big Wet. We compared species-specific changes in reporting rates between periods in both programmes to explore the resistance (the ability to persist during drought) and resilience (extent of recovery post-drought) of species to climate extremes. Results: There was a substantial decline in the reporting rates of 42-62% (depending on programme) of species between surveys conducted early and late in the Big Dry. In the Big Wet, there was some recovery, with 21-29% of species increasing substantially. However, more than half of species did not recover and 14-27% of species continued to decline in reporting rate compared with early on in the Big Dry. Species' responses were not strongly related to ecological traits. Species resistance to the drought was inversely related to resilience in the Big Wet for 20-35% of the species, while 76-78% of species with low resistance showed an overall decline across the study period. Conclusions: As declines occurred largely irrespective of ecological traits, this suggests a widespread mechanism is responsible. Species that declined the most during the Big Dry did not necessarily show the greatest recoveries. In already much modified regions, climate extremes such as extended drought will induce on-going changes in the biota. © 2014 John Wiley & Sons Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lectrides varians (Mosely) is a large, ecologically-important, caddisfly found in perennial and intermittent streams throughout much of eastern Australia. We conducted a population genetic analysis to investigate the dispersal potential of L. varians, building on previous works that have assessed life-history traits associated with drought resistance. Genetic analyses of L. varians from the Grampians region of Victoria, based on mitochondrial DNA sequence data, revealed extensive gene flow and a lack of genetic structure across the sample range (ΦST = 0.04). This suggests that the species is a strong disperser and is likely to be resilient to increased drying and habitat fragmentation under climate change considering other known resistance traits. However, during this study, two divergent genotypes were identified, indicating a potential species complex. A comprehensive phylogenetic analysis of L. varians across its current range was subsequently performed, confirming the species is indeed paraphyletic, consisting of one lineage that is restricted to the Grampians National Park and the other being widespread throughout south-eastern Australia. Further analyses revealed consistent morphological differences between these lineages supporting the notion that L. varians is a species complex. We discuss the implications of these findings with regard to conservation and taxonomy of this important invertebrate group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following landscape change, species invasions and extinctions may lead to biotic homogenisation, resulting in increased taxonomic and functional similarity between previously distinct biotas. Biotic homogenisation is more likely to occur in landscapes where the matrix contrasts strongly with native vegetation patches. To test this, we examined the distribution of ground-active beetles in a landscape of remnant Eucalyptus open woodland patches where large areas of lower contrast matrix (farmland) are being transformed to high-contrast pine plantations in south-eastern Australia. We sampled beetles from 30 sites including six replicates of five categories; (1) remnants adjacent to farmland, (2) remnants adjacent to plantation, (3) farmland, (4) plantation, and, (5) remnants between pine plantation and farmland. Community composition in the pine matrix was similar to native patches embedded in pine (ANOSIM, Global R=. 0.49, P<. 0.000), which we suggest is due to biotic homogenisation. Remnant patches with edges of both farmland and pine plantation did not represent an intermediate community composition between patches surrounded by either matrix type, but rather a unique habitat with unique species. Farmland supported the greatest number of individuals (. F=. 9.049, df. =. 25, P<. 0.000) and species (. F=. 5.875, df. =. 25, P=. 0.002), even compared to native remnant patches. Our results suggest that matrix transformations can reduce species richness and homogenise within-patch populations. This may increase the risk of species declines in fragmented landscapes where plantations are not only replacing native vegetation patches, but also other matrix types that may better support biodiversity. Our findings are particularly concerning given expanding plantation establishment worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Alaotran gentle lemur Hapalemur alaotrensis is a Critically Endangered lemur, which exclusively inhabits the marshes around Lac Alaotra in northeast Madagascar. In the past decades the population of H. alaotrensis has experienced a dramatic decline due to poaching, habitat destruction and degradation. Surveys have been carried out periodically to follow the status of the population. Here we present the results of a survey carried out between May and June 2008 in the southwestern part of the marshes around Alaotra and discuss the key findings derived from the analysis of the data collected. Our study indicates that the probability of detecting the species in an area where it is present is very low and depends on factors that vary in space and time. These results stress the need to account for imperfect detection when monitoring this species, an issue especially relevant when reporting population trends. Our analyses also show that habitat fragmentation is a key determinant of habitat suitability for H. alaotrensis, with fragmented areas of marsh showing low suitability. Finally, our observations and analysis suggest that the protection provided by the local community to H. alaotrensis in Andreba is contributing to the conservation of this Critically Endangered species. This highlights the need to continue working on engaging the local communities in the conservation of the marshes at Lac Alaotra as a critical element to secure the future of H. alaotrensis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat change due to resort development threatens rare and endemic fauna of alpine and subalpine regions. There is an urgent need to understand species persistence in such areas. The broad-toothed rat (Mastacomys fuscus) is a rare, specialist species found in alpine and subalpine regions of Australia. We conducted fecal pellet surveys in an alpine resort to determine the species' distribution and habitat requirements. Eight individuals were radiotracked to investigate movement patterns and habitat use. Fecal pellets were found in areas of dense vegetation cover up to 1 m above ground. Home ranges were small (1,488-6,106 m2) and encompassed managed indigenous vegetation on or beside ski runs. Five individuals regularly crossed a narrow (3-5 m) cleared track. Two adult males dispersed (including traversing a wide grassy ski run) up to 1 km. The ability to cross modified areas and move throughout the landscape is proposed as a key factor facilitating the persistence of M. fuscus in the resort. Enhancing the capacity of species to move between habitat patches should be incorporated into alpine resort management plans. Such management will become increasingly important as anthropogenic disturbance increases in alpine regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resource selection by animals influences individual fitness, the abundance of local populations, and the distribution of species. Further, the degree to which individuals select particular resources can be altered by numerous factors including competition, predation, and both natural- and human-induced environmental change. Understanding the influence of such factors on the way animals use resources can guide species conservation and management in changing environments. In this study, we investigated the effects of a prescribed fire on small-scale (microhabitat) resource selection, abundance, body condition, and movement pathways of a native Australian rodent, the bush rat (Rattus fuscipes). Using a before-after, control-impact design, we gathered data from 60 individuals fitted with spool and line tracking devices. In unburnt forest, selection of resources by bush rats was positively related to rushes, logs and complex habitat, and negatively related to ferns and litter. Fire caused selection for spreading grass, rushes, and complex habitat to increase relative to an unburnt control location. At the burnt location after the fire, rats selected patches of unburnt vegetation, and no rats were caught at a trapping site where most of the understory had been burnt. The fire also reduced bush rat abundance and body condition and caused movement pathways to become more convoluted. After the fire, some individuals moved through burnt areas but the majority of movements occurred within unburnt patches. The effects of fire on bush rat resource selection, movement, body condition, and abundance were likely driven by several linked factors including limited access to shelter and food due to the loss of understory vegetation and heightened levels of perceived predation risk. Our findings suggest the influence of prescribed fire on small mammals will depend on the resulting mosaic of burnt and unburnt patches and how well this corresponds to the resource requirements of particular species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As oyster fishing continues to degrade reef habitat along the US Atlantic coast, oyster reefs appear increasingly fragmented on small spatial scales. In outdoor mesocosms, experiments tested how consumption of representatives of 4 different bivalve guilds by each of 3 mesopredators varies between continuous and fine-scale patches of oyster reef habitat. The mesopredator that fed least (stone crab) exhibited no detectable change in consumption on any bivalve (ribbed mussel, bay scallop, hard clam, and 3 size classes of eastern oyster). Consumption of bay scallops by both blue crabs and sheepshead fish was greater in small patches than in continuous oyster reef habitat. Of the bivalve guilds tested, only the scallop possesses swimming motility sufficient to reduce predation, an escape response that would likely leave the bivalve protected within structured habitat in larger continuous oyster reefs. Sheepshead consumed more small oysters in the continuous habitat than in the fine patches, while no other predator-prey interaction exhibited differential feeding as a function of habitat patchiness. Consequently, predation by mesopredators on bivalves can vary with the scale of oyster reef patchiness, but this process may depend upon the bivalve guild. Understanding the role of habitat patchiness on fine scales may be increasingly important in view of the declines in apex predatory sharks leading to mesopredator release, and global climate change directly and indirectly enhancing stone crab abundances, thereby increasing potential predation on bivalves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass edges due to greater food availability, and provide experimental support for the resource distribution model as an explanation for edge effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat fragmentation and diseases have resulted in a decline of the marsh deer (Blastocerus (dichotomus) throughout its South American range. Our objectives were to determine whether marsh deer intended for translocation from a region of the Rio Parana Basin had been infected previously by foot-and-mouth disease virus (FMDV) and whether they were carrying virus We captured marsh deer from June to October 1998 and collected blood from 108 animals and esophageal-pharyngeal fluid from 53 Serum was tested for antibodies against three FMDV serotypes (O, A, and C) by liquid-phase-blocking sandwich enzyme-linked immunosorbent assay (ELISA) Esophageal-pharyngeal fluid was tested for FMDV RNA by reverse transcription polymerase chain reaction (RT-PCR) and inoculation into three successive baby hamster kidney (BHK-21) cell subcultures, followed by RT-PCR of cultures We detected low log(10) titers (range 1 0-1 5) to FM DV subtype A(24) Cruzeiro in 19 of 108 sampled marsh deer, but failed to isolate FMDV or detect FMDV RNA in any samples we conclude that marsh deer from our study site were unlikely to carry FMDV, however, as a preventive measure, the 19 animals with titers for FMDV were not sent to FMDV-free Brazilian states

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hunting spider communities of the Dionycha clade were studied 1986 through 1988 in fragmented woodlands and secondary agricultural habitats of the Botucatu area in São Paulo state, Brazil. The original vegetation of mainly tropical Atlantic rain forest (Mata Atlantica) was cleared already 70 years ago. In a total sample of over 1000 adult spiders, 247 species belonging to 12 families Mere determined. A decreasing frequency and diversity of spiders rc as found if forest remnants were compared with sugar cane fields and cattle pasture. The specific composition of the spider fauna as surveyed in different habitats is discussed under ecological aspects and in relation to the history of land use.