987 resultados para Gulf Region
Resumo:
The "MARECHIARA-phytoplankton" dataset contains phytoplankton data collected in the ongoing time-series at Stn MC ( 40°48.5' N, 14°15' E) in the Gulf of Naples. This dataset spans over the period 1984-2006 and contains data of phytoplankton species composition and abundance. Phytoplankton sampling was regularly conducted from January 1984 till July 1991 and in 1995-2006. Sampling was interrupted from August 1991 till January 1995. The sampling frequency was fortnightly till 1991 and weekly since 1995. Phytoplankton samples were collected at 0.5 m depth using Niskin bottles and immediately fixed with formaldehyde (0.8-1.6% final concentration) for species identification and counts.
Resumo:
The Red Sea has a special place among the adjacent seas of the world. High evaporation, exclusion of its deep water from contact with the Indian Ocean proper and complete absence of continental drainage may result special conditions of the chemistry of the Red Sea. This paper aims to describe and explain the peculiarity of the hydrochemical situation. The influence of the topography, of the inflow and outflow through the straights of Bab el Mandeb, of the evaporation, of the stability of the water layers, and of the circulation will be studied. An attempt is made to estimate the apparent oxygen ultilisation in order to obtain an indication of the biological activity. A further attempt is made toward the quantitative estimation of the circulation of the nutrients and also to obtain some information about transport, dissolution, and precipitation of calcium carbonate. The basis of these investigations are mainly observations of R. V. "Meteor" during the International Indian Ocean Expedition 1964/65. The determination of dissolved oxygen, dissolved inorganic phosphate, nitrate, nitrite, ammonia, pH, alkalinity, silicate as well as salinity and temperature forms the necessary basis for such an investigation of the chemical conditions. In the first chapter the methods and some modifications for the determination of the chemical properties as applied during the I.I.O.E. cruise of R. V. "Meteor" are described. The new methods, as worked out and tested under sea going conditions during several years by the author, are described in more detail. These are the methods for nitrate, silicate, the automatic determination of dissolved inorganic phosphate and silicate, the automated determination of total phosphorus, the in situ recording of the oxygen tension, and the modification for the determination of ammonia, calcium, and dissolved oxygen. With these revised methods more than 18,000 determinations have been carried out during the Indian Ocean cruise. The complete working up of the chemical data of the Indian Ocean Expedition of R. V. "Meteor" is devided into four sections: Contributions 1) to the Chemistry of the Red Sea and the Inner Gulf of Aden, 2) to the Gulf of Aden and the Somali Coast Region, 3) to the Western Indian Coast Region, and 4) to the Persian Gulf and the Straits of Oman. This paper presents the first contribution. The special hydrographical conditions are discussed. It can be shown, that the increase of salinity in the surface waters from the south to the north of the Red Sea is only to about 30 % due to evaporation. The remaining increase is presumed to be due to the admixture of deep water to the surface layers. A special rate for the consumption of oxygen (0.114 ml/ l/a) is derived for the deep water of the Red Sea at 1500 m. Based upon the distribution of the dissolved oxygen along the axii of the Red Sea, a chematic model for the longitudinal circulation of the Red Sea is constructed. This model should be considered as a first approximation and may explain the special distribution of phosphate, nitrate, and silicate. Based upon the evaluation of the residence time of the deep water a dissolution rate for silicate is estimated as 1 mygat/a. It seems possible to calculate residence times of water masses outside the Red Sea from the silicate content. The increase of silicate and the consumption of oxygen lead to residence times of the water below the thermocine of 30 to 48 years. The distribution of oxygen in the Straits of Bab el Mandeb is described and discussed. The rate of consumption of the oxygen in the outflowing Red Sea water is estimated to 8.5 ml/ l/a. This rather high rate is explained with reference to the special conditions in the outflowing water. The Red Sea water is characterized initially by a relative high content of oxygen and a low content of nutrients. The increase in nutrients and the decrease in the oxygen content is a secondary process of the Red Sea water on its way to the Arabian Sea. Based upon the vertical distribution of the dissolved inorganic phosphate vertical exchange coefficients of 1 - 4 g/cm/sec and vertical current speeds of 10**-5 to 10**-4 cm/sec are calculated for some stations in the Red Sea. The distribution of phosphate, silicate, nitrate, nitrite and ammonia for the Red Sea and the Straits of Bab el Mandeb are discussed. The special circulation is evaluated and the balance of the nutrients is estimated by means of the brutto transport. The nutrient deficit is assumed to be balanced by sporadic inflow of intermediate water from the Gulf of Aden. An example for such an inflow has been observed and is demonstrated. The silicate-salinity relationships are a suitable way for characterizing water masses in the Red Sea. Equations for the calculation of the different components from the carbonate system, the ion activities, and the calcium carbonate saturation are evaluated. The influence of temperature and pressure is taken into account. The carbonate saturation is calculated from the determined concentrations of calcium, alkalinity, and the hydrogen ion activity. Saturation values of 320 % are found for the surface layer and of 100% ± 1 for the deep water. The extraordinary equilibrium conditions may explain the constant Ca/Cl ratio and also the sedimentation of undissolved carbonate skelecons even in greater depths. A main sedimentation rate of 2 * 10**-3cm/year is evaluated from a total sedimentation of 10 * 106 to/a of calcium carbonate in the Red Sea. The appendix contains those data, which are not published in the data volume of the I.I.O.E. expedition of R. V. "Meteor".
Resumo:
Paleomagnetic analyses of the natural remanent magnetization of >1700 vertically oriented sediment samples from Integrated Ocean Drilling Program (IODP) Holes U1319A, U1320A, U1322B, and U1324B in the northern Gulf of Mexico reveal complex magnetostratographic signals for the Brazos-Trinity and Ursa region carried by detrital iron oxide minerals. Additionally, gyroremanent magnetization was observed to form during alternating-field demagnetization of samples containing an enhanced amount of magnetic iron sulfide minerals. Most characteristic remanent magnetization inclinations are reasonable for the site latitudes. Stable declinations allow for azimuth correction of the formerly unoriented drill cores.
Resumo:
"MMS 96-0027"--Vol. 2.
Resumo:
Item 603-G
Resumo:
At head of title : Draft.
Resumo:
The third in a series of five-yearly aerial surveys for dugongs in Shark Bay, Ningaloo Reef and Exmouth Gulf was conducted in July 1999. The first two surveys provided evidence of an apparently stable population of dugongs, with similar to 1000 animals in each of Exmouth Gulf and Ningaloo Reef, and 10000 in Shark Bay. We report estimates of less than 200 for each of Exmouth Gulf and Ningaloo Reef and similar to 14000 for Shark Bay. This is an apparent overall increase in the dugong population over this whole region, but with a distributional shift of animals to the south. The most plausible hypothesis to account for a large component of this apparent population shift is that animals in Exmouth Gulf and Ningaloo Reef moved to Shark Bay, most likely after Tropical Cyclone Vance impacted available dugong forage in the northern habitat. Bias associated with survey estimate methodology, and normal changes in population demographics may also have contributed to the change. The movement of large numbers of dugongs over the scale we suggest has important management implications. First, such habitat-driven shifts in regional abundance will need to be incorporated in assessing the effectiveness of marine protected areas that aim to protect dugongs and their habitat. Second, in circumstances where aerial surveys are used to estimate relative trends in abundance of dugongs, animal movements of the type we propose could lead to errors in interpretation.
Resumo:
Corporate governance disclosure is important for countries aiming to attract international investors and reduce companies’ cost of capital. The relationship between corporate governance disclosure (CGD) and its determinants is the main objective of the current research. Accordingly, the research aimed to: (i) assess CGD level in the Gulf countries; (ii) investigate the impact of ownership structure (proportion of institutional, governmental, managerial and family ownership) on CGD; (iii) explore the effect of board characteristics (proportion of independent board members, proportion of family members on board, CEO/chairman duality and board size) on CGD; (iv) examine the relationship between diversity (proportion of foreign and female members on a board and in the senior management team) and CGD; and (v) test the association between firm characteristics (company size, age, liquidity, profitability, leverage, industry and auditor types) and CGD. Gulf countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates) were selected for the study since they share similar characteristics and represent a relatively homogeneous category in the Middle East and North African region. A CGD index of 232 items was developed and divided into six categories: ownership structure and investor rights; financial transparency and information disclosure; information on auditors; board and senior management structure and process; board committees; and finally corporate behaviour and responsibility. Annual reports available for listed non-financial companies of the Gulf countries were 270 for the year 2009. The maximum CGD level was 63%, whereas the minimum was 5%, with an average disclosure level of 32%. Several regression models were conducted to enhance the robustness of the results and conclusions of the study. The results indicated that five variables had a significant positive relationship with CGD: proportion of independent members on a board, proportion of foreign members on a board, proportion of foreign members in the senior management team, auditor type and profitability. The research contributes to the literature on corporate governance voluntary disclosure in developing countries. Practical contributions consist of several recommendations to policy makers, regulators, and professional institutions in the Gulf countries.
Resumo:
From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.
Resumo:
While the R.V. "Meteor" was in the eastern Persian Gulf, during the time between March 31 and April 14, 1965, bacteriological investigations of the water and sediment were performed. The content of saprophytic bacteria in the water decreases from the coasts outward to the middle of the gulf. This shows a good correlation with the turbidity values. In a sediment core from the southern part of the gulf, the bacterial counts in all the horizonts were much higher than those from the northern part of the Persian Gulf. This agrees with the findings of the geologists, according to which the proportion of carbon compounds in the sediments decreases from south to north. Luminous bacteria were found in many samples of water. Their proportion of the saprophytic flora becomes less from south to north. Most of the water samples also contained pigmented bacteria. On freshwater medium, relatively few bacteria were able to develop. The proportion of these non-halophilic forms amounted up to 7 % (average about 1 %) of the total saprophytic count, in 22 samples examined. In this group the pigmented forms played a very large role. A comparison of the distribution of saprophytic bacteria in the eastern Persian Gulf with that in other inland seas such as the North Sea and the Baltic Sea shows, that the saprophytic counts in the subtropical Persian Gulf (arid region) lie clearly below those in corresponding sea areas of the temperate zones (humid region). This is to be attributed above all to the greater flow of organic nutrients into the latter.
Resumo:
Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.
Resumo:
The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.
Resumo:
The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.
Resumo:
In this research I focused on the propagation of acoustic rays in shallow water areas then I selected the Persian Gulf and described sound transmission in this region with emphasize on physical properties of water masses and of sediments. Finally I studied on the sound speed variations and sound attention with data collected from this area (NE of Farsi Island & 50 kilometers south of Delware). Sound speed deviation in western part of Strait of Hormuz in winter is between 20-30 m/s and it is between 5-20 m/s in the Oman Sea. Minimum sound speed deviation is at 23-24 degree north & 60-62 degree east. In spring, this deviation varies from 25-35 m/s, which is greater than in winter. In winter, at east of 56 degree east, greater speed are in shallow water coastal areas. In summer, sound speeds are greater than in spring and vary from 35 to 55 m/s at western part of Strait of Hormuz and 20 to 40 m/s in Oman Sea. Finally in autumn, sound speed deviation is 30-45 m/s west of 56 degree east and in Oman Sea is the same. The greatest attenuation rate caused by absorption in Bandar Dayer is between 17 to 27 meters depth, which is from water masses with different densities.
Resumo:
Turbulence and internal waves are probably important in generating layered structures in frontal region of marine environments (e.g. near river plumes outflow into the sea). Here we investigate the role of normal modes of internal waves in generation of layered structure in a part of Persian Gulf where river plume inters and in some laboratory experiments. The model prediction and observations show that layers so formed have a thickness of about 2m based on salinity variations with depth, but layers (about 5m) based on horizontal velocity profiles. Laboratory experiments with a plume outflow in a Filling Box profile also generate normal mode layered structure with 21H=0.5 (where A is layer thickness and H is the plume depth). In these experiments as Re of the flow is smaller than the Re of field flow. The normal modes are substantially dissipated with depth. Typical values of dissipation factor is about 0(100). This factor for field observation is 0(10) which is still substantial. Qualitative comparison between layered structure in field and laboratory is good. It should be emphasized that field observation is for semi-enclosed seas but the laboratory experiments are for enclosed region. Hence some of the discrepancies in the results of two cases are inevitable. Layered structures in marine environments are also produced by double diffusive convection. In this region this should be studied separately.