980 resultados para Guided mode resonant filters
Resumo:
We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium, and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a lowpower, stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold environment.
Resumo:
Study of the characteristics of planar loop resonators and their use in the construction of filters at microwave frequencies are presented in this thesis.A detailed investigation of parameters affecting the strength of coupling and the resonant frequency are also carried out .Techniques for size reduction in bandstop and bandpass filters using planar loop resonators are developed.Different configurations of bandstop and bandpass filters using loop resonators are simulated and experimental results on optimal filter configurations are presented.
Resumo:
In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method
Resumo:
The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers to attain higher system capacities and data rates. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.16e standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 24% to include WiMAX compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated.
Resumo:
The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.11a standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 33% to include WLANa compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
This work introduced the novel conception of complex coupled hybrid VCSELs for the first time. Alternating organic and inorganic layers in the lasers provide periodic variation of refractive index and optical gain, which enable single mode operation and low threshold of the VCSELs. Model calculations revealed great reduction of the lasing threshold with factors over 30, in comparison with the existing micro-cavity lasers. Tunable green VCSEL has been also designed, implemented and analyzed taking advantage of the broad photoluminescence spectra of the organics. Free standing optical thin films without compressive stress are technologically implemented. Multiple membrane stacks with air gap in between have been fabricated for the implementation of complex coupled VCSEL structures. Complex coupled hybrid VCSEL is a very promising approach to fill the gaps in the green spectral range of the semiconductor lasers.
Resumo:
Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.
Resumo:
Weakly nonlinear interactions among equatorial waves have been explored in this paper using the adiabatic version of the equatorial beta-plane primitive equations in isobaric coordinates. Assuming rigid lid vertical boundary conditions, the conditions imposed at the surface and at the top of the troposphere were expanded in a Taylor series around two isobaric surfaces in an approach similar to that used in the theory of surface-gravity waves in deep water and capillary-gravity waves. By adopting the asymptotic method of multiple time scales, the equatorial Rossby, mixed Rossby-gravity, inertio-gravity, and Kelvin waves, as well as their vertical structures, were obtained as leading-order solutions. These waves were shown to interact resonantly in a triad configuration at the O(epsilon) approximation. The resonant triads whose wave components satisfy a resonance condition for their vertical structures were found to have the most significant interactions, although this condition is not excluding, unlike the resonant conditions for the zonal wavenumbers and meridional modes. Thus, the analysis has focused on such resonant triads. In general, it was found that for these resonant triads satisfying the resonance condition in the vertical direction, the wave with the highest absolute frequency always acts as an energy source (or sink) for the remaining triad components, as usually occurs in several other physical problems in fluid dynamics. In addition, the zonally symmetric geostrophic modes act as catalyst modes for the energy exchanges between two dispersive waves in a resonant triad. The integration of the reduced asymptotic equations for a single resonant triad shows that, for the initial mode amplitudes characterizing realistic magnitudes of atmospheric flow perturbations, the modes in general exchange energy on low-frequency (intraseasonal and/or even longer) time scales, with the interaction period being dependent upon the initial mode amplitudes. Potential future applications of the present theory to the real atmosphere with the inclusion of diabatic forcing, dissipation, and a more realistic background state are also discussed.
Resumo:
In this work we use magnetic resonant x-ray diffraction to study the magnetic properties of a 1.5 mu m EuTe film and an EuTe/PbTe superlattice (SL). The samples were grown by molecular beam epitaxy on (111) oriented BaF(2) substrates. The measurements were made at the Eu L(2) absorption edge, taking profit of the resonant enhancement of more than two orders in the magnetically diffracted intensity. At resonance, high counting rates above 11000 cps were obtained for the 1.5 gm EuTe film, allowing to check for the type II antiferromagnetic order of EuTe. An equal population of the three possible in-plane magnetic domains was found. The EuTe/PbTe SL magnetic peak showed a satellite structure, indicating the presence of magnetic correlations among the 5 ML (monolayers) EuTe layers across the 15 ML PbTe non-magnetic spacers. The temperature dependence of the integrated intensities of the film and the SL yielded different Neel temperatures T(N). The lower T(N) for the SL is explained considering the higher influence of the surface atoms, with partial bonds lost.
Resumo:
This paper presents a new approach to develop Field Programmable Analog Arrays (FPAAs),(1) which avoids excessive number of programming elements in the signal path, thus enhancing the performance. The paper also introduces a novel FPAA architecture, devoid of the conventional switching and connection modules. The proposed FPAA is based on simple current mode sub-circuits. An uncompounded methodology has been employed for the programming of the Configurable Analog Cell (CAC). Current mode approach has enabled the operation of the FPAA presented here, over almost three decades of frequency range. We have demonstrated the feasibility of the FPAA by implementing some signal processing functions.
Resumo:
The research trend for harvesting energy from the ambient vibration sources has moved from using a linear resonant generator to a non-linear generator in order to improve on the performance of a linear generator; for example, the relatively small bandwidth, intolerance to mistune and the suitability of the device for low-frequency applications. This article presents experimental results to illustrate the dynamic behaviour of a dual-mode non-linear energy-harvesting device operating in hardening and bi-stable modes under harmonic excitation. The device is able to change from one mode to another by altering the negative magnetic stiffness by adjusting the separation gap between the magnets and the iron core. Results for the device operating in both modes are presented. They show that there is a larger bandwidth for the device operating in the hardening mode compared to the equivalent linear device. However, the maximum power transfer theory is less applicable for the hardening mode due to occurrence of the maximum power at different frequencies, which depends on the non-linearity and the damping in the system. The results for the bi-stable mode show that the device is insensitive to a range of excitation frequencies depending upon the input level, damping and non-linearity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.
Resumo:
This paper presents an improved design methodology for determining the parameters used in the classical Series-Parallel Loaded Resonant (SPLR) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some characteristics of the resonant filter during the dimming process, such as: range of switching frequency, phase shift and rms value of the current drained by the resonant filter + fluorescent lamp set.