961 resultados para Gruppi di Lie, Varietà Differenziabili, Algebre di Lie.
Resumo:
Il presente lavoro di tesi si inserisce nel contesto dei sistemi ITS e intende realizzare un insieme di protocolli in ambito VANET relativamente semplici ma efficaci, in grado di rilevare la presenza di veicoli in avvicinamento a un impianto semaforico e di raccogliere quelle informazioni di stato che consentano all’infrastruttura stradale di ottenere una stima il più possibile veritiera delle attuali condizioni del traffico in ingresso per ciascuna delle direzioni previste in tale punto. Si prevede di raccogliere i veicoli in gruppi durante il loro avvicinamento al centro di un incrocio. Ogni gruppo sarà costituito esclusivamente da quelle vetture che stanno percorrendo uno stesso tratto stradale e promuoverà l’intercomunicazione tra i suoi diversi membri al fine di raccogliere e integrare i dati sulla composizione del traffico locale. Il sistema realizzato cercherà di trasmettere alle singole unità semaforiche un flusso di dati sintetico ma costante contenente le statistiche sull’ambiente circostante, in modo da consentire loro di applicare politiche dinamiche e intelligenti di controllo della viabilità. L’architettura realizzata viene eseguita all’interno di un ambiente urbano simulato nel quale la mobilità dei nodi di rete corrisponde a rilevazioni reali effettuate su alcune porzioni della città di Bologna. Le performance e le caratteristiche del sistema complessivo vengono analizzate e commentate sulla base dei diversi test condotti.
Resumo:
Il progetto di dottorato IMITES (Interpretación de la Metáfora entre ITaliano y ESpañol) si pone come obiettivo quello di analizzare l’interpretazione simultanea del linguaggio figurato nelle combinazioni italiano-spagnolo e spagnolo-italiano. Prevede l’analisi di una serie di dati estratti da discorsi pronunciati in italiano e spagnolo in occasione di conferenze tenutesi presso la Commissione europea, e le loro versioni interpretate in spagnolo e italiano rispettivamente. Le espressioni figurate contenute nei discorsi originali sono state allineate e messe a confronto con le versioni fornite dagli interpreti, con il duplice obiettivo di a) capire quali causano maggiori problemi agli interpreti e b) analizzare le strategie di interpretazione applicate da professionisti quali quelli della Direzione Generale Interpretazione (DG SCIC) della Commissione europea nell’interpretare metafore. Il progetto prevede anche la somministrazione di un questionario agli interpreti delle cabine spagnola e italiana del DG SCIC, con l’obiettivo di sondare la loro percezione delle difficoltà che sottendono all’interpretazione del linguaggio figurato, le indicazioni metodologiche ricevute (se del caso) dai loro docenti a tale riguardo e le strategie applicate nella pratica professionale. Infine, l’ultima fase del progetto di ricerca prevede la sperimentazione di una proposta didattica attraverso uno studio caso-controllo svolto su studenti del secondo anno della Laurea Magistrale in Interpretazione delle Scuole Interpreti di Forlì e Trieste. Il gruppo-caso ha ricevuto una formazione specifica sull'interpretazione delle metafore, mentre gruppo-controllo è stato monitorato nella sua evoluzione. L’obiettivo di questa ultima fase di ricerca è quello di valutare, da una parte, l’ “insegnabilità” di strategia per affrontare il linguaggio figurato in interpretazione simultanea, e, dall’altra, l’efficacia dell’unità didattica proposta, sviluppata in base all’analisi svolta su IMITES.
Resumo:
La tesi approfondisce alcuni argomenti di teoria dei gruppi e fornisce alcuni esempi nella classificazione dei gruppi finiti di ordine dato.
Resumo:
Nella tesi si arriva a classificare le varietà di Seifert, particolari 3-varietà che ammettono una fibrazione in cerchi. Dopo un'introduzione sulla topologia delle varietà e sulla classificazione delle superfici, vengono presentate le 3-varietà e la decomposizione in fattori primi. Con l'esposizione della decomposizione JSJ vengono introdotte le varietà di Seifert. Infine vengono classificati i fibrati di Seifert, tramite la superficie di base e le pendenze delle fibre singolari.
Resumo:
Caratteristica comune ai regimi di consolidamento previsti dai diversi ordinamenti, è quella di consentire la compensazione tra utili e perdite di società residenti, e, di negare, o rendere particolarmente difficoltosa, la stessa compensazione, quando le perdite sono maturate da società non residenti. La non considerazione delle perdite comporta una tassazione al lordo del gruppo multinazionale, per mezzo della quale, non si colpisce il reddito effettivo dei soggetti che vi appartengono. L’effetto immediato è quello di disincentivare i gruppi a travalicare i confini nazionali. Ciò impedisce il funzionamento del Mercato unico, a scapito della libertà di stabilimento prevista dagli artt. 49-54 del TFUE. Le previsioni ivi contenute sono infatti dirette, oltre ad assicurare a società straniere il beneficio della disciplina dello Stato membro ospitante, a proibire altresì allo Stato di origine di ostacolare lo stabilimento in un altro Stato membro dei propri cittadini o delle società costituite conformemente alla propria legislazione. Gli Stati membri giustificano la discriminazione tra società residenti e non residenti alla luce della riserva di competenza tributaria ad essi riconosciuta dall’ordinamento europeo in materia delle imposte dirette, dunque, in base all’equilibrata ripartizione del potere impositivo. In assenza di qualsiasi riferimento normativo, va ascritto alla Corte di Giustizia il ruolo di interprete del diritto europeo. La Suprema Corte, con una serie di importanti pronunce, ha infatti sindacato la compatibilità con il diritto comunitario dei vari regimi interni che negano la compensazione transfrontaliera delle perdite. Nel verificare la compatibilità con il diritto comunitario di tali discipline, la Corte ha tentato di raggiungere un (difficile) equilibrio tra due interessi completamenti contrapposti: quello comunitario, riconducibile al rispetto della libertà di stabilimento, quello degli Stati membri, che rivendicano il diritto di esercitare il proprio potere impositivo.
Resumo:
In questa tesi si è data una dimostrazione dovuta ad Andreotti e Frenkel del Teorema di Lefschetz, utilizzando gli strumenti e i risultati della Teoria di Morse.
Resumo:
In questa tesi si mostra che la caratteristica di Eulero e l'orientabilità (o non orientabilità) sono invarianti topologici per le superfici compatte e si studia il teorema di classificazione per tali superfici.
Resumo:
La struttura di gruppo è una delle strutture algebriche più semplici e importanti della matematica. Un gruppo si può descrivere in vari modi: uno dei più interessanti è la presentazione per generatori e relazioni. Sostanzialmente presentare un gruppo per generatori e relazioni significa dire quali specifiche ”regole di calcolo” e semplificazione valgono nel gruppo in considerazione oltre a quelle che derivano dagli assiomi di gruppo. Questo porta in particolare alla definizione di gruppo libero. Un gruppo libero non ha regole di calcolo oltre quelle derivanti dagli assiomi di gruppo. Ogni gruppo è un quoziente di un gruppo libero su un appropriato insieme di generatori per un sottogruppo normale, generato dalle relazioni. In questa tesi si ricordano le definizioni più importanti ed elementari della teoria dei gruppi e si passa in seguito a discutere il gruppo libero e le presentazioni di gruppi con generatori e relazioni, dando alcuni esempi. La tesi si conclude illustrando l’algoritmo di Coxeter e Todd, per enumerare le classi laterali di un sottogruppo quando si ha un gruppo presentato per generatori e relazioni.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
Il teorema di Chevalley-Shephard-Todd è un importante risultato del 1954/1955 nella teoria degli invarianti polinomiali sotto l'azione del gruppo delle matrici invertibili. Lo scopo di questa tesi è presentare e dimostrare il teorema nella versione in cui l'anello dei polinomi ha come campo base R e di vedere alcuni esempi concreti di applicazione del teorema. Questa dimostrazione può essere generalizzata facilmente avendo come campo base un qualsiasi campo K di caratteristica 0.
Resumo:
Tesi compilativa riguardo definizione, proprietà e metodi di calcolo di Gruppi superiori di omotopia. Argomenti:definizioni, gruppi delle sfere, proprietà, sospensione, proiezioni di rivestimento, spazi fibrati, approssimazione cellulare, gruppi stabili di omotopia, esempi.
Resumo:
La struttura di gruppo è una delle strutture algebriche più semplici e fondamentali della matematica. Un gruppo si può descrivere in vari modi. Noi abbiamo illustrato la presentazione tramite generatori e relazioni, che consiste sostanzialmente nell'elencare le "regole di calcolo" che valgono nel gruppo considerato, oltre a quelle che derivano dagli assiomi di gruppo. L'idea principale di questa tesi è quella di mostrare come un argomento così tecnico e specifico possa essere reso "elementare" e anche divertente. Siamo partiti dalla costruzione di un gioco, inventando regole da aggiungere di volta in volta. Abbiamo poi tentato di spiegare il medesimo concetto da un punto di vista teorico, tramite la teoria dei gruppi liberi. Si tratta di gruppi che hanno un insieme di generatori soddisfacenti unicamente alle relazioni che sono conseguenza degli assiomi di gruppo.Ogni gruppo è un quoziente di un gruppo libero su un appropriato insieme di generatori per un sottogruppo normale, generato dalle relazioni. Infine si è illustrato il problema della parola formulato da Max Dhen nel 1911, e si è visto come tale problema è risolubile per i gruppi liberi.
Resumo:
Questa tesi descrive alcune proprietà delle algebre monounarie finite e si propone di trovare un metodo per classificarle. Poiché infatti il numero di algebre di ordine n aumenta notevolmente con la crescita di quest’ultimo, si cerca un modo per suddividerle in classi d’isomorfismo. In particolare, dal momento che anche il numero di queste classi cresce esponenzialmente all’aumentare di n, utilizziamo una classificazione meno fine dell’isomorfismo basata sul polinomio strutturale. Grazie a questo strumento infatti è possibile risalire a famiglie di grafi orientati associati ad algebre monounarie, a due a due non isomorfi, ricavando perciò alcune specifiche caratteristiche di quest’ultime. Infine, calcolando l’ordine di gruppi particolari, detti automorfi, si può ottenere l’effettivo numero di algebre aventi un dato polinomio strutturale.
Resumo:
Lo scopo della tesi è dimostrare un teorema che offre una condizione necessaria e sufficiente affinché un poliedro con facce identificate risulti una varietà tridimensionale. Nel primo capitolo si descrive una possibile metodologia di studio e presentazione delle superfici al fine di fare un confronto con le 3-varietà. Nel secondo capitolo, prima di studiare il teorema principale, si descrivono nozioni di topologia algebrica utili nella sua dimostrazione: la coomologia e la dualità di Poincaré. Infine il terzo capitolo è dedicato alla descrizione di due esempi di 3-varietà e ad un controesempio al teorema in dimensione 5.
Resumo:
Questo elaborato tratta della progettazione e della realizzazione di una serie di gruppi funzionali di un impianto automatico per l'applicazione, tramite colla, di carta assorbente o pluriball all'interno di vaschette alimentari. Il sistema progettato si inserisce all'interno di una linea produttiva, tipicamente tra una macchina termoformatrice e una tranciatrice.