954 resultados para Growth hormone-releasing peptides
Resumo:
The effects of breed and of recombinant bovine somatotropin (rbST) treatment on growth hormone gene expression were studied in young bulls. The experiment was completely randomized in a [2 × 2]-factorial arrangement, using two levels of rbst (0 or 250 mg/animal/14 days), and two breed groups (Nelore and Simmental x Nelore crossbred). A CDNA encoding Bos indicus growth hormone was cloned and sequenced for use as a probe in Northern and dot blot analyses. Compared to the Bos taurus structural gene, the Bos indicus CDNA was found to begin 21 bases downstream from the transcription initiation site and had only two discrepancies (C to T at position 144-His and T to C at position 354-Phe), without changes in the polypeptide sequence. However, two amino acid substitutions were found for Bubalus spp., which belong to the same tribe. The rbst treatment did not change any of the characteristics evaluated (body and pituitary gland weights, growth hormone MRNA expression level). Crossbred animals had significantly higher body weight and heavier pituitaries than Nelore cattle. Pituitary weight was proportional to body weight in both breed groups. Growth hormone MRNA expression in the pituitary was similar (P>0.075) for both breed and hormonal treatment groups, but was 31.9% higher in the pure Nelore group, suggesting that growth hormone gene transcription regulation differs among these breeds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insulin-like growth factor type 1 (IGF1) is a mediator of growth hormone (GH) action, and therefore, IGF1 is a candidate gene for recombinant human GH (rhGH) pharmacogenetics. Lower serum IGF1 levels were found in adults homozygous for 19 cytosine-adenosine (CA) repeats in the IGF1 promoter. The aim of this study was to evaluate the influence of (CA)n IGF1 polymorphism, alone or in combination with GH receptor (GHR)-exon 3 and -202 A/C insulin-like growth factor binding protein-3 (IGFBP3) polymorphisms, on the growth response to rhGH therapy in GH-deficient (GHD) patients. Eighty-four severe GHD patients were genotyped for (CA) n IGF1, -202 A/C IGFBP3 and GHR-exon 3 polymorphisms. Multiple linear regressions were performed to estimate the effect of each genotype, after adjustment for other influential factors. We assessed the influence of genotypes on the first year growth velocity (1st y GV) (n = 84) and adult height standard deviation score (SDS) adjusted for target-height SDS (AH-TH SDS) after rhGH therapy (n = 37). Homozygosity for the IGF1 19CA repeat allele was negatively correlated with 1st y GV (P = 0.03) and AH-TH SDS (P = 0.002) in multiple linear regression analysis. In conjunction with clinical factors, IGF1 and IGFBP3 genotypes explain 29% of the 1st y GV variability, whereas IGF1 and GHR polymorphisms explain 59% of final height-target-height SDS variability. We conclude that homozygosity for IGF1 (CA) 19 allele is associated with less favorable short-and long-term growth outcomes after rhGH treatment in patients with severe GHD. Furthermore, this polymorphism exhibits a non-additive interaction with -202 A/C IGFBP3 genotype on the 1st y GV and with GHR-exon 3 genotype on adult height. The Pharmacogenomics Journal (2012) 12, 439-445; doi:10.1038/tpj.2011.13; published online 5 April 2011
Resumo:
Programa de doctorado: Clínica Veterinaria e Investigación Terapéutica
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.
Resumo:
Context and Objective: Main features of the autosomal dominant form of GH deficiency (IGHD II) include markedly reduced secretion of GH combined with low concentrations of IGF-I leading to short stature. Design, Setting, and Patients: A female patient presented with short stature (height -6.0 sd score) and a delayed bone age of 2 yr at the chronological age of 5 yr. Later, at the age of 9 yr, GHD was confirmed by standard GH provocation test, which revealed subnormal concentrations of GH and a very low IGF-I. Genetic analysis of the GH-1 gene revealed the presence of a heterozygous R178H mutation. Interventions and Results: AtT-20 cells coexpressing both wt-GH and GH-R178H showed a reduced GH secretion after forskolin stimulation compared with the cells expressing only wt-GH, supporting the diagnosis of IGHD II. Because reduced GH concentrations found in the circulation of our untreated patient could not totally explain her severe short stature, functional characterization of the GH-R178H performed by studies of GH receptor binding and activation of the Janus kinase-2/signal transducer and activator of transcription-5 pathway revealed a reduced binding affinity of GH-R178H for GH receptor and signaling compared with the wt-GH. Conclusion: This is the first report of a patient suffering from short stature caused by a GH-1 gene alteration affecting not only GH secretion (IGHD II) but also GH binding and signaling, highlighting the necessity of functional analysis of any GH variant, even in the alleged situation of IGHD II.
Resumo:
To compare exercise-induced growth hormone (GH) response in patients with Type 1 diabetes during stable euglycaemic and hyperglycaemic conditions.
Resumo:
Hypopituitarism with adult-onset growth hormone deficiency (GHD) is associated with increased cardiovascular morbidity and mortality due to premature and progressive atherosclerosis. An underlying cause of atherosclerosis is increased insulin resistance. Elevated fasting and postprandial glucose and lipid levels may contribute to premature atherosclerosis. We studied effects of growth hormone replacement (GHRT) on fasting and postprandial metabolic parameters as well as on insulin sensitivity in patients with adult-onset GHD.
Resumo:
We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.
Resumo:
It is becoming most clear that many genes are involved in controlling the regulation of growth. Ultimately however, at the level of growth hormone (GH), the relevant question may be not whether a patient is GH-deficient, but whether he is GH-responsive. As these disturbances can be divided into two gross categories, namely alterations causing subnormal GH secretion and/or those presenting with subnormal GH sensitivity/responsiveness, the main aim of this review is to focus on genes involved in growth regulation leading to short stature caused by an alteration of GH insensitivity/GH responsiveness; in other words, clinical circumstances where individually adapted GH replacement therapy may help to increase height velocity and eventually final height.
Resumo:
The role of exercise testing in the assessment of GH deficiency (GHD) in adult patients is currently unclear. This study aimed at evaluating the diagnostic value of exercise-induced GH levels in the detection of severe GHD in adult patients.