765 resultados para Grouping, clustering, campi, associazione
Resumo:
A method for determining the mutual nearest neighbours (MNN) and mutual neighbourhood value (mnv) of a sample point, using the conventional nearest neighbours, is suggested. A nonparametric, hierarchical, agglomerative clustering algorithm is developed using the above concepts. The algorithm is simple, deterministic, noniterative, requires low storage and is able to discern spherical and nonspherical clusters. The method is applicable to a wide class of data of arbitrary shape, large size and high dimensionality. The algorithm can discern mutually homogenous clusters. Strong or weak patterns can be discerned by properly choosing the neighbourhood width.
Resumo:
A nonparametric, hierarchical, disaggregative clustering algorithm is developed using a novel similarity measure, called the mutual neighborhood value (MNV), which takes into account the conventional nearest neighbor ranks of two samples with respect to each other. The algorithm is simple, noniterative, requires low storage, and needs no specification of the expected number of clusters. The algorithm appears very versatile as it is capable of discerning spherical and nonspherical clusters, linearly nonseparable clusters, clusters with unequal populations, and clusters with lowdensity bridges. Changing of the neighborhood size enables discernment of strong or weak patterns.
Resumo:
The paper deals with a model-theoretic approach to clustering. The approach can be used to generate cluster description based on knowledge alone. Such a process of generating descriptions would be extremely useful in clustering partially specified objects. A natural byproduct of the proposed approach is that missing values of attributes of an object can be estimated with ease in a meaningful fashion. An important feature of the approach is that noisy objects can be detected effectively, leading to the formation of natural groups. The proposed algorithm is applied to a library database consisting of a collection of books.
Resumo:
Relative geometric arrangements of the sample points, with reference to the structure of the imbedding space, produce clusters. Hence, if each sample point is imagined to acquire a volume of a small M-cube (called pattern-cell), depending on the ranges of its (M) features and number (N) of samples; then overlapping pattern-cells would indicate naturally closer sample-points. A chain or blob of such overlapping cells would mean a cluster and separate clusters would not share a common pattern-cell between them. The conditions and an analytic method to find such an overlap are developed. A simple, intuitive, nonparametric clustering procedure, based on such overlapping pattern-cells is presented. It may be classified as an agglomerative, hierarchical, linkage-type clustering procedure. The algorithm is fast, requires low storage and can identify irregular clusters. Two extensions of the algorithm, to separate overlapping clusters and to estimate the nature of pattern distributions in the sample space, are also indicated.
Resumo:
Clustering is a process of partitioning a given set of patterns into meaningful groups. The clustering process can be viewed as consisting of the following three phases: (i) feature selection phase, (ii) classification phase, and (iii) description generation phase. Conventional clustering algorithms implicitly use knowledge about the clustering environment to a large extent in the feature selection phase. This reduces the need for the environmental knowledge in the remaining two phases, permitting the usage of simple numerical measure of similarity in the classification phase. Conceptual clustering algorithms proposed by Michalski and Stepp [IEEE Trans. PAMI, PAMI-5, 396–410 (1983)] and Stepp and Michalski [Artif. Intell., pp. 43–69 (1986)] make use of the knowledge about the clustering environment in the form of a set of predefined concepts to compute the conceptual cohesiveness during the classification phase. Michalski and Stepp [IEEE Trans. PAMI, PAMI-5, 396–410 (1983)] have argued that the results obtained with the conceptual clustering algorithms are superior to conventional methods of numerical classification. However, this claim was not supported by the experimental results obtained by Dale [IEEE Trans. PAMI, PAMI-7, 241–244 (1985)]. In this paper a theoretical framework, based on an intuitively appealing set of axioms, is developed to characterize the equivalence between the conceptual clustering and conventional clustering. In other words, it is shown that any classification obtained using conceptual clustering can also be obtained using conventional clustering and vice versa.
Resumo:
Here we rederive the hierarchy of equations for the evolution of distribution functions of various orders using a convenient parameterization. We use this to obtain equations for two- and three-point correlation functions in powers of a small parameter, viz., the initial density contrast. The correspondence of the lowest order solutions of these equations to the results from the linear theory of density perturbations is shown for an OMEGA = 1 universe. These equations are then used to calculate, to the lowest order, the induced three-point correlation function that arises from Gaussian initial conditions in an OMEGA = 1 universe. We obtain an expression which explicitly exhibits the spatial structure of the induced three-point correlation function. It is seen that the spatial structure of this quantity is independent of the value of OMEGA. We also calculate the triplet momentum. We find that the induced three-point correlation function does not have the ''hierarchical'' form often assumed. We discuss possibilities of using the induced three-point correlation to interpret observational data. The formalism developed here can also be used to test a validity of different schemes to close the
Resumo:
We use the BBGKY hierarchy equations to calculate, perturbatively, the lowest order nonlinear correction to the two-point correlation and the pair velocity for Gaussian initial conditions in a critical density matter-dominated cosmological model. We compare our results with the results obtained using the hydrodynamic equations that neglect pressure and find that the two match, indicating that there are no effects of multistreaming at this order of perturbation. We analytically study the effect of small scales on the large scales by calculating the nonlinear correction for a Dirac delta function initial two-point correlation. We find that the induced two-point correlation has a x(-6) behavior at large separations. We have considered a class of initial conditions where the initial power spectrum at small k has the form k(n) with 0 < n less than or equal to 3 and have numerically calculated the nonlinear correction to the two-point correlation, its average over a sphere and the pair velocity over a large dynamical range. We find that at small separations the effect of the nonlinear term is to enhance the clustering, whereas at intermediate scales it can act to either increase or decrease the clustering. At large scales we find a simple formula that gives a very good fit for the nonlinear correction in terms of the initial function. This formula explicitly exhibits the influence of small scales on large scales and because of this coupling the perturbative treatment breaks down at large scales much before one would expect it to if the nonlinearity were local in real space. We physically interpret this formula in terms of a simple diffusion process. We have also investigated the case n = 0, and we find that it differs from the other cases in certain respects. We investigate a recently proposed scaling property of gravitational clustering, and we find that the lowest order nonlinear terms cause deviations from the scaling relations that are strictly valid in the linear regime. The approximate validity of these relations in the nonlinear regime in l(T)-body simulations cannot be understood at this order of evolution.
Resumo:
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
Resumo:
Emerging high-dimensional data mining applications needs to find interesting clusters embeded in arbitrarily aligned subspaces of lower dimensionality. It is difficult to cluster high-dimensional data objects, when they are sparse and skewed. Updations are quite common in dynamic databases and they are usually processed in batch mode. In very large dynamic databases, it is necessary to perform incremental cluster analysis only to the updations. We present a incremental clustering algorithm for subspace clustering in very high dimensions, which handles both insertion and deletions of datapoints to the backend databases.
Resumo:
Delineation of homogeneous precipitation regions (regionalization) is necessary for investigating frequency and spatial distribution of meteorological droughts. The conventional methods of regionalization use statistics of precipitation as attributes to establish homogeneous regions. Therefore they cannot be used to form regions in ungauged areas, and they may not be useful to form meaningful regions in areas having sparse rain gauge density. Further, validation of the regions for homogeneity in precipitation is not possible, since the use of the precipitation statistics to form regions and subsequently to test the regional homogeneity is not appropriate. To alleviate this problem, an approach based on fuzzy cluster analysis is presented. It allows delineation of homogeneous precipitation regions in data sparse areas using large scale atmospheric variables (LSAV), which influence precipitation in the study area, as attributes. The LSAV, location parameters (latitude, longitude and altitude) and seasonality of precipitation are suggested as features for regionalization. The approach allows independent validation of the identified regions for homogeneity using statistics computed from the observed precipitation. Further it has the ability to form regions even in ungauged areas, owing to the use of attributes that can be reliably estimated even when no at-site precipitation data are available. The approach was applied to delineate homogeneous annual rainfall regions in India, and its effectiveness is illustrated by comparing the results with those obtained using rainfall statistics, regionalization based on hard cluster analysis, and meteorological sub-divisions in India. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.
Resumo:
Advertisements(Ads) are the main revenue earner for Television (TV) broadcasters. As TV reaches a large audience, it acts as the best media for advertisements of products and services. With the emergence of digital TV, it is important for the broadcasters to provide an intelligent service according to the various dimensions like program features, ad features, viewers’ interest and sponsors’ preference. We present an automatic ad recommendation algorithm that selects a set of ads by considering these dimensions and semantically match them with programs. Features of the ad video are captured interms of annotations and they are grouped into number of predefined semantic categories by using a categorization technique. Fuzzy categorical data clustering technique is applied on categorized data for selecting better suited ads for a particular program. Since the same ad can be recommended for more than one program depending upon multiple parameters, fuzzy clustering acts as the best suited method for ad recommendation. The relative fuzzy score called “degree of membership” calculated for each ad indicates the membership of a particular ad to different program clusters. Subjective evaluation of the algorithm is done by 10 different people and rated with a high success score.
Resumo:
Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.
Resumo:
Applications in various domains often lead to very large and frequently high-dimensional data. Successful algorithms must avoid the curse of dimensionality but at the same time should be computationally efficient. Finding useful patterns in large datasets has attracted considerable interest recently. The primary goal of the paper is to implement an efficient Hybrid Tree based clustering method based on CF-Tree and KD-Tree, and combine the clustering methods with KNN-Classification. The implementation of the algorithm involves many issues like good accuracy, less space and less time. We will evaluate the time and space efficiency, data input order sensitivity, and clustering quality through several experiments.