866 resultados para Group theoretical based techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AC motors are largely used in a wide range of modern systems, from household appliances to automated industry applications such as: ventilations systems, fans, pumps, conveyors and machine tool drives. Inverters are widely used in industrial and commercial applications due to the growing need for speed control in ASD systems. Fast switching transients and the common mode voltage, in interaction with parasitic capacitive couplings, may cause many unwanted problems in the ASD applications. These include shaft voltage and leakage currents. One of the inherent characteristics of Pulse Width Modulation (PWM) techniques is the generation of the common mode voltage, which is defined as the voltage between the electrical neutral of the inverter output and the ground. Shaft voltage can cause bearing currents when it exceeds the amount of breakdown voltage level of the thin lubricant film between the inner and outer rings of the bearing. This phenomenon is the main reason for early bearing failures. A rapid development in power switches technology has lead to a drastic decrement of switching rise and fall times. Because there is considerable capacitance between the stator windings and the frame, there can be a significant capacitive current (ground current escaping to earth through stray capacitors inside a motor) if the common mode voltage has high frequency components. This current leads to noises and Electromagnetic Interferences (EMI) issues in motor drive systems. These problems have been dealt with using a variety of methods which have been reported in the literature. However, cost and maintenance issues have prevented these methods from being widely accepted. Extra cost or rating of the inverter switches is usually the price to pay for such approaches. Thus, the determination of cost-effective techniques for shaft and common mode voltage reduction in ASD systems, with the focus on the first step of the design process, is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. Electrical power generation from renewable energy sources, such as wind energy systems, has become a crucial issue because of environmental problems and a predicted future shortage of traditional energy sources. Thus, Chapter 2 focuses on the shaft voltage analysis of stator-fed induction generators (IG) and Doubly Fed Induction Generators DFIGs in wind turbine applications. This shaft voltage analysis includes: topologies, high frequency modelling, calculation and mitigation techniques. A back-to-back AC-DC-AC converter is investigated in terms of shaft voltage generation in a DFIG. Different topologies of LC filter placement are analysed in an effort to eliminate the shaft voltage. Different capacitive couplings exist in the motor/generator structure and any change in design parameters affects the capacitive couplings. Thus, an appropriate design for AC motors should lead to the smallest possible shaft voltage. Calculation of the shaft voltage based on different capacitive couplings, and an investigation of the effects of different design parameters are discussed in Chapter 3. This is achieved through 2-D and 3-D finite element simulation and experimental analysis. End-winding parameters of the motor are also effective factors in the calculation of the shaft voltage and have not been taken into account in previous reported studies. Calculation of the end-winding capacitances is rather complex because of the diversity of end winding shapes and the complexity of their geometry. A comprehensive analysis of these capacitances has been carried out with 3-D finite element simulations and experimental studies to determine their effective design parameters. These are documented in Chapter 4. Results of this analysis show that, by choosing appropriate design parameters, it is possible to decrease the shaft voltage and resultant bearing current in the primary stage of generator/motor design without using any additional active and passive filter-based techniques. The common mode voltage is defined by a switching pattern and, by using the appropriate pattern; the common mode voltage level can be controlled. Therefore, any PWM pattern which eliminates or minimizes the common mode voltage will be an effective shaft voltage reduction technique. Thus, common mode voltage reduction of a three-phase AC motor supplied with a single-phase diode rectifier is the focus of Chapter 5. The proposed strategy is mainly based on proper utilization of the zero vectors. Multilevel inverters are also used in ASD systems which have more voltage levels and switching states, and can provide more possibilities to reduce common mode voltage. A description of common mode voltage of multilevel inverters is investigated in Chapter 6. Chapter 7 investigates the elimination techniques of the shaft voltage in a DFIG based on the methods presented in the literature by the use of simulation results. However, it could be shown that every solution to reduce the shaft voltage in DFIG systems has its own characteristics, and these have to be taken into account in determining the most effective strategy. Calculation of the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions is discussed in Chapter 8. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinctive feature of Chinese test is that a Chinese document is a sequence of Chinese with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we use a sequence-based visual localization algorithm to reveal surprising answers to the question, how much visual information is actually needed to conduct effective navigation? The algorithm actively searches for the best local image matches within a sliding window of short route segments or 'sub-routes', and matches sub-routes by searching for coherent sequences of local image matches. In contract to many existing techniques, the technique requires no pre-training or camera parameter calibration. We compare the algorithm's performance to the state-of-the-art FAB-MAP 2.0 algorithm on a 70 km benchmark dataset. Performance matches or exceeds the state of the art feature-based localization technique using images as small as 4 pixels, fields of view reduced by a factor of 250, and pixel bit depths reduced to 2 bits. We present further results demonstrating the system localizing in an office environment with near 100% precision using two 7 bit Lego light sensors, as well as using 16 and 32 pixel images from a motorbike race and a mountain rally car stage. By demonstrating how little image information is required to achieve localization along a route, we hope to stimulate future 'low fidelity' approaches to visual navigation that complement probabilistic feature-based techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changing environments present a number of challenges to mobile robots, one of the most significant being mapping and localisation. This problem is particularly significant in vision-based systems where illumination and weather changes can cause feature-based techniques to fail. In many applications only sections of an environment undergo extreme perceptual change. Some range-based sensor mapping approaches exploit this property by combining occasional place recognition with the assumption that odometry is accurate over short periods of time. In this paper, we develop this idea in the visual domain, by using occasional vision-driven loop closures to infer loop closures in nearby locations where visual recognition is difficult due to extreme change. We demonstrate successful map creation in an environment in which change is significant but constrained to one area, where both the vanilla CAT-Graph and a Sum of Absolute Differences matcher fails, use the described techniques to link dissimilar images from matching locations, and test the robustness of the system against false inferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the highest level of competitive sport, nearly all performances of athletes (both training and competitive) are chronicled using video. Video is then often viewed by expert coaches/analysts who then manually label important performance indicators to gauge performance. Stroke-rate and pacing are important performance measures in swimming, and these are previously digitised manually by a human. This is problematic as annotating large volumes of video can be costly, and time-consuming. Further, since it is difficult to accurately estimate the position of the swimmer at each frame, measures such as stroke rate are generally aggregated over an entire swimming lap. Vision-based techniques which can automatically, objectively and reliably track the swimmer and their location can potentially solve these issues and allow for large-scale analysis of a swimmer across many videos. However, the aquatic environment is challenging due to fluctuations in scene from splashes, reflections and because swimmers are frequently submerged at different points in a race. In this paper, we temporally segment races into distinct and sequential states, and propose a multimodal approach which employs individual detectors tuned to each race state. Our approach allows the swimmer to be located and tracked smoothly in each frame despite a diverse range of constraints. We test our approach on a video dataset compiled at the 2012 Australian Short Course Swimming Championships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. Mass spectrometry (MS)-driven proteomics uniquely allows for the detection, identification and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review we describe applications of this technology in KLK biomarker discovery, and elucidate MS-based techniques which have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis and therapies.