989 resultados para Gray Level Images
Resumo:
L’érosion éolienne est un problème environnemental parmi les plus sévères dans les régions arides, semi-arides et les régions sèches sub-humides de la planète. L’érosion des sols accélérée par le vent provoque des dommages à la fois localement et régionalement. Sur le plan local, elle cause la baisse des nutriments par la mobilisation des particules les plus fines et de la matière organique. Cette mobilisation est une des causes de perte de fertilité des sols avec comme conséquence, une chute de la productivité agricole et une réduction de la profondeur de la partie arable. Sur le plan régional, les tempêtes de poussières soulevées par le vent ont un impact non négligeable sur la santé des populations, et la déposition des particules affecte les équipements hydrauliques tels que les canaux à ciel ouvert ainsi que les infrastructures notamment de transport. Dans les régions où les sols sont fréquemment soumis à l’érosion éolienne, les besoins pour des études qui visent à caractériser spatialement les sols selon leur degré de vulnérabilité sont grands. On n’a qu’à penser aux autorités administratives qui doivent décider des mesures à prendre pour préserver et conserver les potentialités agropédologiques des sols, souvent avec des ressources financières modestes mises à leur disposition. Or, dans certaines de ces régions, comme notre territoire d’étude, la région de Thiès au Sénégal, ces études font défaut. En effet, les quelques études effectuées dans cette région ou dans des contextes géographiques similaires ont un caractère plutôt local et les approches suivies (modèles de pertes des sols) nécessitent un nombre substantiel de données pour saisir la variabilité spatiale de la dynamique des facteurs qui interviennent dans le processus de l’érosion éolienne. La disponibilité de ces données est particulièrement problématique dans les pays en voie de développement, à cause de la pauvreté en infrastructures et des problèmes de ressources pour le monitoring continu des variables environnementales. L’approche mise de l’avant dans cette recherche vise à combler cette lacune en recourant principalement à l’imagerie satellitale, et plus particulièrement celle provenant des satellites Landsat-5 et Landsat-7. Les images Landsat couvrent la presque totalité de la zone optique du spectre exploitable par télédétection (visible, proche infrarouge, infrarouge moyen et thermique) à des résolutions relativement fines (quelques dizaines de mètres). Elles permettant ainsi d’étudier la distribution spatiale des niveaux de vulnérabilité des sols avec un niveau de détails beaucoup plus fin que celui obtenu avec des images souvent utilisées dans des études environnementales telles que AVHRR de la série de satellites NOAA (résolution kilométrique). De plus, l’archive complet des images Landsat-5 et Landsat-7 couvrant une période de plus de 20 ans est aujourd’hui facilement accessible. Parmi les paramètres utilisés dans les modèles d’érosion éolienne, nous avons identifiés ceux qui sont estimables par l’imagerie satellitale soit directement (exemple, fraction du couvert végétal) soit indirectement (exemple, caractérisation des sols par leur niveau d’érodabilité). En exploitant aussi le peu de données disponibles dans la région (données climatiques, carte morphopédologique) nous avons élaboré une base de données décrivant l’état des lieux dans la période de 1988 à 2002 et ce, selon les deux saisons caractéristiques de la région : la saison des pluies et la saison sèche. Ces données par date d’acquisition des images Landsat utilisées ont été considérées comme des intrants (critères) dans un modèle empirique que nous avons élaboré en modulant l’impact de chacun des critères (poids et scores). À l’aide de ce modèle, nous avons créé des cartes montrant les degrés de vulnérabilité dans la région à l’étude, et ce par date d’acquisition des images Landsat. Suite à une série de tests pour valider la cohérence interne du modèle, nous avons analysé nos cartes afin de conclure sur la dynamique du processus pendant la période d’étude. Nos principales conclusions sont les suivantes : 1) le modèle élaboré montre une bonne cohérence interne et est sensible aux variations spatiotemporelles des facteurs pris en considération 2); tel qu’attendu, parmi les facteurs utilisés pour expliquer la vulnérabilité des sols, la végétation vivante et l’érodabilité sont les plus importants ; 3) ces deux facteurs présentent une variation importante intra et inter-saisonnière de sorte qu’il est difficile de dégager des tendances à long terme bien que certaines parties du territoire (Nord et Est) aient des indices de vulnérabilité forts, peu importe la saison ; 4) l’analyse diachronique des cartes des indices de vulnérabilité confirme le caractère saisonnier des niveaux de vulnérabilité dans la mesure où les superficies occupées par les faibles niveaux de vulnérabilité augmentent en saison des pluies, donc lorsque l’humidité surfacique et la végétation active notamment sont importantes, et décroissent en saison sèche ; 5) la susceptibilité, c’est-à-dire l’impact du vent sur la vulnérabilité est d’autant plus forte que la vitesse du vent est élevée et que la vulnérabilité est forte. Sur les zones où la vulnérabilité est faible, les vitesses de vent élevées ont moins d’impact. Dans notre étude, nous avons aussi inclus une analyse comparative entre les facteurs extraits des images Landsat et celles des images hyperspectrales du satellite expérimental HYPERION. Bien que la résolution spatiale de ces images soit similaire à celle de Landsat, les résultats obtenus à partir des images HYPERION révèlent un niveau de détail supérieur grâce à la résolution spectrale de ce capteur permettant de mieux choisir les bandes spectrales qui réagissent le plus avec le facteur étudié. Cette étude comparative démontre que dans un futur rapproché, l’amélioration de l’accessibilité à ce type d’images permettra de raffiner davantage le calcul de l’indice de vulnérabilité par notre modèle. En attendant cette possibilité, on peut de contenter de l’imagerie Landsat qui offre un support d’informations permettant tout de même d’évaluer le niveau de fragilisation des sols par l’action du vent et par la dynamique des caractéristiques des facteurs telles que la couverture végétale aussi bien vivante que sénescente.
Resumo:
L’état d’attention sans réflexion, aussi appelé « mindfulness », a démontré des effets positifs en clinique pour les désordres émotionnels associés à diverses conditions. Le nombre d’études portant sur la caractérisation des substrats neuronaux de cet état attentionnel croît, mais il importe d’investiguer davantage à ce chapitre pour éventuellement améliorer les interventions cliniques. La présente étude compte aider à déterminer, par la magnétoencéphalographie, quelles régions cérébrales sont en corrélation avec le mindfulness chez des experts, i.e. des méditants Zen. Ces derniers cultivent un état dans lequel ils s’abstiennent de rechercher ou de rejeter les phénomènes sensoriels, ce qui en fait d’excellents candidats à la présente étude. Dans un contexte de stimulations visuelles émotionnelles, il fut demandé aux méditants tantôt d’observer les images dans un état de mindfulness (condition expérimentale), tantôt dans un état dit normal (condition contrôle) où aucun effort particulier d’attention n’était requis. Les résultats d’analyse suggèrent que les participants expérimentèrent une intensité émotionnelle moins importante en mindfulness : les cotes subjectives ainsi qu’une réponse magnétique cérébrale reliée aux émotions nommée Potentiel Positif Tardif magnétique (PPTm) suggèrent cela. Cependant, le résultat le plus statistiquement probant dépasse la nature affective des stimuli. Il s’agit d’une diminution temporellement soutenue de l’activité de fréquence gamma au niveau des zones visuelles associatives du lobe temporal droit, sans égard à la nature des images. Également, une suppression de l’activité gamma d’une zone du cortex préfrontal latéral gauche fut observée. Ceci pourrait indiquer une diminution de la conceptualisation des stimuli reliée au langage et aux processus réflectifs du soi.
Resumo:
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales.
Resumo:
Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification
Resumo:
We present a set of techniques that can be used to represent and detect shapes in images. Our methods revolve around a particular shape representation based on the description of objects using triangulated polygons. This representation is similar to the medial axis transform and has important properties from a computational perspective. The first problem we consider is the detection of non-rigid objects in images using deformable models. We present an efficient algorithm to solve this problem in a wide range of situations, and show examples in both natural and medical images. We also consider the problem of learning an accurate non-rigid shape model for a class of objects from examples. We show how to learn good models while constraining them to the form required by the detection algorithm. Finally, we consider the problem of low-level image segmentation and grouping. We describe a stochastic grammar that generates arbitrary triangulated polygons while capturing Gestalt principles of shape regularity. This grammar is used as a prior model over random shapes in a low level algorithm that detects objects in images.
Resumo:
El programa BTEC es un programa de estudios que permite obtener una cualificación profesional o laboral. Este recurso está preparado para ayudar al alumno en el curso BTEC National, nivel 3, sector profesional de servicios públicos. Comprende once unidades, además de actividades de evaluación en cada unidad que cubren todos los criterios de ésta para ofrecer a los estudiantes la oportunidad de practicar sus tareas y profundizar en el conocimiento y la comprensión de la materia.
Resumo:
El programa BTEC es un programa de estudios que permite obtener una cualificación profesional o laboral. Este recurso está preparado para ayudar al alumno en el curso BTEC National, nivel 3, sector profesional de servicios públicos. Incluye diez unidades: expediciones al aire libre y aventura; respuesta a las incidencias del servicio de emergencia; planificación y gestión de incidentes mayores; competencias de la policía en los servicios públicos; comportamiento en el sector público; la comunicación y la tecnología en los servicios públicos uniformados; servicios de atención; aspectos del sistema legal y del sistema de justicia penal; temas de actualidad / medios de comunicación en los servicios públicos y políticas y prácticas ambientales. Además comprende actividades de evaluación en cada unidad que cubren todos los criterios de ésta para ofrecer a los estudiantes la oportunidad de practicar sus tareas y profundizar en el conocimiento y la comprensión de la materia.
Resumo:
El programa BTEC es un programa de estudios que permite obtener una cualificación profesional o laboral. Este recurso está preparado para ayudar al alumno en el curso BTEC First, nivel 2, sector profesional tecnología de la información y se divide en diez unidades: la comunicación en la industria de las TI;trabajar en la industria de las TI; sistemas informáticos; personalización del software; creación de una red informática; sistemas de base de datos; desarrollo de sitios web; gráficos por ordenador y desarrollo de los juegos de ordenador. Incluye actividades de evaluación en cada unidad que cubren todos los criterios de ésta para ofrecer a los estudiantes la oportunidad de practicar sus tareas y profundizar en el conocimiento y la comprensión de la materia.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
Empirical Constraints on Future Sea Level Rise; Bern, Switzerland, 25–29 August 2008; Eustatic sea level (ESL) rise during the 21st century is perhaps the greatest threat from climate change, but its magnitude is contested. Geological records identify examples of nonlinear ice sheet response to climate forcing, suggesting a strategy for refining estimates of 21st-century sea level change. In August 2008, Past Global Changes (PAGES), International Marine Past Global Change Study (IMAGES), and the University of Bern cosponsored a workshop to address this possibility. The workshop highlighted several ways that paleoceanography studies can place limits on future sea level rise, and these are enlarged upon here.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt for bridging the so called "semantic gap". The proposed image feature vector model is fundamentally underpinned by an automatic image labelling framework, called Collaterally Cued Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts accompanying the images with the state-of-the-art low-level visual feature extraction techniques for automatically assigning textual keywords to image regions. A subset of the Corel image collection was used for evaluating the proposed method. The experimental results indicate that our semantic-level visual content descriptors outperform both conventional visual and textual image feature models.
Resumo:
Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges.
Resumo:
When a visual stimulus is suppressed from awareness, processing of the suppressed image is necessarily reduced. Although adaptation to simple image properties such as orientation still occurs, adaptation to high-level properties such as face identity is eliminated. Here we show that emotional facial expression continues to be processed even under complete suppression, as indexed by substantial facial expression aftereffects.
Resumo:
Threat-relevant stimuli such as fear faces are prioritized by the human visual system. Recent research suggests that this prioritization begins during unconscious processing: A specialized (possibly subcortical) pathway evaluates the threat relevance of visual input, resulting in preferential access to awareness for threat stimuli. Our data challenge this claim. We used a continuous flash suppression (CFS) paradigm to present emotional face stimuli outside of awareness. It has been shown using CFS that salient (e.g., high contrast) and recognizable stimuli (faces, words) become visible more quickly than less salient or less recognizable stimuli. We found that although fearful faces emerge from suppression faster than other faces, this was wholly explained by their low-level visual properties, rather than their emotional content. We conclude that, in the competition for visual awareness, the visual system prefers and promotes unconscious stimuli that are more “face-like,” but the emotional content of a face has no effect on stimulus salience.