985 resultados para Grassland biomass estimation
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic and pelagic trawl data were collected during various pelagic surveys carried out by IFREMER in May between 2000 and 2012 (except 2001), on the eastern continental shelf of the Bay of Biscay (Pelgas series). The acoustic data were collected with a Simrad EK60 echosounder operating at 38 kHz (beam angle at -3 dB: 7°, pulse length set to 1.024 ms). The echosounder transducer was mounted on the vessel keel, at 6 m below the sea surface. The sampling design were parallel transects spaced 12 nm apart which were orientated perpendicular to the coast line from 20 m to about 200 m bottom depth. The nominal sailing speed was 10 knots and 3 knots on average during fishing operations. The scrutinising (species identification) of acoustic data was done by first characterising acoustic schools by type and then linking these types with the species composition of specific trawl hauls. The data set contains nautical area backscattering values, biomass and abundance estimates for blue whiting for one nautical mile long transect lines. Further information on the survey design, scrutinising and biomass estimation can be found in Doray et al. 2012.
Resumo:
Remote sensing is a promising approach for above ground biomass estimation, as forest parameters can be obtained indirectly. The analysis in space and time is quite straight forward due to the flexibility of the method to determine forest crown parameters with remote sensing. It can be used to evaluate and monitoring for example the development of a forest area in time and the impact of disturbances, such as silvicultural practices or deforestation. The vegetation indices, which condense data in a quantitative numeric manner, have been used to estimate several forest parameters, such as the volume, basal area and above ground biomass. The objective of this study was the development of allometric functions to estimate above ground biomass using vegetation indices as independent variables. The vegetation indices used were the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Simple Ratio (SR) and Soil-Adjusted Vegetation Index (SAVI). QuickBird satellite data, with 0.70 m of spatial resolution, was orthorectified, geometrically and atmospheric corrected, and the digital number were converted to top of atmosphere reflectance (ToA). Forest inventory data and published allometric functions at tree level were used to estimate above ground biomass per plot. Linear functions were fitted for the monospecies and multispecies stands of two evergreen oaks (Quercus suber and Quercus rotundifolia) in multiple use systems, montados. The allometric above ground biomass functions were fitted considering the mean and the median of each vegetation index per grid as independent variable. Species composition as a dummy variable was also considered as an independent variable. The linear functions with better performance are those with mean NDVI or mean SR as independent variable. Noteworthy is that the two better functions for monospecies cork oak stands have median NDVI or median SR as independent variable. When species composition dummy variables are included in the function (with stepwise regression) the best model has median NDVI as independent variable. The vegetation indices with the worse model performance were EVI and SAVI.