983 resultados para Grasses crop
Resumo:
Invasive and noxious weeds are well known as a pervasive problem, imposing significant economic burdens on all areas of agriculture. Whilst there are multiple possible pathways of weed dispersal in this industry, of particular interest to this discussion is the unintended dispersal of weed seeds within fodder. During periods of drought or following natural disasters such as wild fire or flood, there arises the urgent need for 'relief' fodder to ensure survival and recovery of livestock. In emergency situations, relief fodder may be sourced from widely dispersed geographic regions, and some of these regions may be invaded by an extensive variety of weeds that are both exotic and detrimental to the intended destination for the fodder. Pasture hay is a common source of relief fodder and it typically consists of a mixture of grassy and broadleaf species that may include noxious weeds. When required urgently, pasture hay for relief fodder can be cut, baled, and transported over long distances in a short period of time, with little opportunity for prebaling inspection. It appears that, at the present time, there has been little effort towards rapid testing of bales, post-baling, for the presence of noxious weeds, as a measure to prevent dispersal of seeds. Published studies have relied on the analysis of relatively small numbers of bales, tested to destruction, in order to reveal seed species for identification and enumeration. The development of faster, more reliable, and non-destructive sampling methods is essential to increase the fodder industry's capacity to prevent the dispersal of noxious weeds to previously unaffected locales.
Resumo:
Lower water availability coupled with labor shortage has resulted in the increasing inability of growers to cultivate puddled transplanted rice (PTR). A field study was conducted in the wet season of 2012 and dry season of 2013 to evaluate the performance of five rice establishment methods and four weed control treatments on weed management, and rice yield. Grass weeds were higher in dry-seeded rice (DSR) as compared to PTR and nonpuddled transplanted rice (NPTR). The highest total weed density (225-256plantsm-2) and total weed biomass (315-501gm-2) were recorded in DSR while the lowest (102-129plantsm-2 and 75-387gm-2) in PTR. Compared with the weedy plots, the treatment pretilachlor followed by fenoxaprop plus ethoxysulfuron plus 2,4-D provided excellent weed control. This treatment, however, had a poor performance in NPTR. In both seasons, herbicide efficacy was better in DSR and wet-seeded rice. PTR and DSR produced the maximum rice grain yields. The weed-free plots and herbicide treatments produced 84-614% and 58-504% higher rice grain yield, respectively, than the weedy plots in 2012, and a similar trend was observed in 2013.
Resumo:
Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal N2O emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily N2O fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize N2O emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce N2O emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.
Resumo:
GRAIN LEGUME ROTATIONS underpin the sustainability of the Australian sugarcane farming system, offering a number of soil health and environmental benefits. Recent studies have highlighted the potential for these breaks to exacerbate nitrous oxide (N2O) emissions. An experiment was implemented in 2012 to evaluate the impact of two fallow management options (bare fallow and soybean break crop) and different soybean residue management practices on N2O emissions and sugarcane productivity. The bare fallow plots were conventionally tilled, whereas the soybean treatments were either tilled, not tilled, residue sprayed with nitrification inhibitor (DMPP) prior to tillage or had a triticale ‘catch crop’ sown between the soybean and sugarcane crops. The fallow plots received either no nitrogen (N0) or fully fertilised (N145) whereas the soybean treatments received 25 kg N/ha at planting only. The Fallow N145 treatment yielded 8% more cane than the soybean tilled treatment. However there was no statistical difference in sugar productivity. Cane yield was correlated with stalk number that was correlated to soil mineral nitrogen status in January. There was only 30% more N/ha in the above-ground biomass between the Fallow N145 and the Fallow N0 treatment; highlighting poor fertiliser nitrogen use efficiency. Supplying adequate nitrogen to meet productivity requirements without causing environmental harm remains a challenge for the Australian sugar industry. The soybean direct drill treatment significantly reduced N2O emissions and produced similar yields and profitability to the soybean tilled treatment (outlined in a companion paper by Wang et.al. in these proceedings). Furthermore, this study has highlighted that the soybean direct drill technique provides an opportunity to enable grain legume cropping in the sugarcane farming system to capture all of the soil health/environmental benefits without exacerbating N2O emissions from Australian sugarcane soils.
Resumo:
NITROUS OXIDE (N2O) IS a potent greenhouse gas and the predominant ozone-depleting substance in the atmosphere. Agricultural nitrogenous fertiliser use is the major source of human-induced N2O emissions. A field experiment was conducted at Bundaberg from October 2012 to September 2014 to examine the impacts of legume crop (soybean) rotation as an alternative nitrogen (N) source on N2O emissions during the fallow period and to investigate low-emission soybean residue management practices. An automatic monitoring system and manual gas sampling chambers were used to measure greenhouse gas emissions from soil. Soybean cropping during the fallow period reduced N2O emissions compared to the bare fallow. Based on the N content in the soybean crop residues, the fertiliser N application rate was reduced by about 120 kg N/ha for the subsequent sugarcane crop. Consequently, emissions of N2O during the sugarcane cropping season were significantly lower from the soybean cropped soil than those from the conventionally fertilised (145 kg N/ha) soil following bare fallow. However, tillage that incorporated the soybean crop residues into soil promoted N2O emissions in the first two months. Spraying a nitrification inhibitor (DMPP) onto the soybean crop residues before tillage effectively prevented the N2O emission spikes. Compared to conventional tillage, practising no-till with or without growing a nitrogen catch crop during the time after soybean harvest and before cane planting also reduced N2O emissions substantially. These results demonstrated that soybean rotation during the fallow period followed with N conservation management practices could offer a promising N2O mitigation strategy in sugarcane farming. Further investigation is required to provide guidance on N and water management following soybean fallow to maintain sugar productivity.
Resumo:
This guide provides information on how to match nutrient rate to crop needs by varying application rates and timing between blocks, guided by soil tests, crop class, cane variety, soil type, block history, soil conditioners and yield expectations.
Resumo:
Springsure Creek Coal (SCC) intends to develop a coal mine using the long wall mining process under grain farming land near Emerald in Central Queensland (CQ). While this technology will result in some subsidence of the land surface, SCC wishes to maintain productivity of the grain cropping land in the precinct after coal mining. However, the impact of the surface subsidence resulting from that mining process on productivity of cropping land in any Australian landscape is currently unclear. A research protocol to investigate the impacts of subsidence on grain productivity for when the SCC project becomes operational is proposed. The protocol has wider application for other similar mining projects throughout the country. A copy of the full report is accessible on www.aginstitute.com.au.
Resumo:
Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.
Resumo:
Pratylenchus thornei is a root-lesion nematode (RLN) of economic significance in the grain growing regions of Australia. Chickpea (Cicer arietinum) is a significant legume crop grown throughout these regions, but previous testing found most cultivars were susceptible to P. thornei. Therefore, improved resistance to P. thornei is an important objective of the Australian chickpea breeding program. A glasshouse method was developed to assess resistance of chickpea lines to P. thornei, which requires relatively low labour and resource input, and hence is suited to routine adoption within a breeding program. Using this method, good differentiation of chickpea cultivars for P. thornei resistance was measured after 12 weeks. Nematode multiplication was higher for all genotypes than the unplanted control, but of the 47 cultivars and breeding lines tested, 17 exhibited partial resistance, allowing less than two fold multiplication. The relative differences in resistance identified using this method were highly heritable (0.69) and were validated against P. thornei data from seven field trials using a multi-environment trial analysis. Genetic correlations for cultivar resistance between the glasshouse and six of the field trials were high (>0.73). These results demonstrate that resistance to P. thornei in chickpea is highly heritable and can be effectively selected in a limited set of environments. The improved resistance found in a number of the newer chickpea cultivars tested shows that some advances have been made in the P. thornei resistance of Australian chickpea cultivars, and that further targeted breeding and selection should provide incremental improvements.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.
Resumo:
Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.