868 resultados para Graphic of a Function
Resumo:
BACKGROUND One aspect of a multidimensional approach to understanding asthma as a complex dynamic disease is to study how lung function varies with time. Variability measures of lung function have been shown to predict response to beta(2)-agonist treatment. An investigation was conducted to determine whether mean, coefficient of variation (CV) or autocorrelation, a measure of short-term memory, of peak expiratory flow (PEF) could predict loss of asthma control following withdrawal of regular inhaled corticosteroid (ICS) treatment, using data from a previous study. METHODS 87 adult patients with mild to moderate asthma who had been taking ICS at a constant dose for at least 6 months were monitored for 2-4 weeks. ICS was then withdrawn and monitoring continued until loss of control occurred as per predefined criteria. Twice-daily PEF was recorded during monitoring. Associations between loss of control and mean, CV and autocorrelation of morning PEF within 2 weeks pre- and post-ICS withdrawal were assessed using Cox regression analysis. Predictive utility was assessed using receiver operator characteristics. RESULTS 53 out of 87 patients had sufficient PEF data over the required analysis period. The mean (389 vs 370 l/min, p<0.0001) and CV (4.5% vs 5.6%, p=0.007) but not autocorrelation of PEF changed significantly from prewithdrawal to postwithdrawal in subjects who subsequently lost control, and were unaltered in those who did not. These changes were related to time to loss of control. CV was the most consistent predictor, with similar sensitivity and sensitivity to exhaled nitric oxide. CONCLUSION A simple, easy to obtain variability measure of daily lung function such as the CV may predict loss of asthma control within the first 2 weeks of ICS withdrawal.
Resumo:
Olfactory impairment has been reported in drug-induced parkinsonism (DIP), but the relationship between dopaminergic dysfunction and smell deficits in DIP patients has not been characterized. To this end, we studied 16 DIP patients and 13 patients affected by Parkinson's disease (PD) using the "Sniffin' Sticks" test and [(123)I] FP-CIT SPECT (single-photon emission computed tomography). DIP patients were divided based on normal (n = 9) and abnormal (n = 7) putamen dopamine transporter binding. Nineteen healthy age- and sex-matched subjects served as controls of smell function. Patients with DIP and pathological putamen uptake had abnormal olfactory function. In this group of patients, olfactory TDI scores (odor threshold, discrimination and identification) correlated significantly with putamen uptake values, as observed in PD patients. By contrast, DIP patients with normal putamen uptake showed odor functions-with the exception of the threshold subtest-similar to control subjects. In this group of patients, no significant correlation was observed between olfactory TDI scores and putamen uptake values. The results of our study suggest that the presence of smell deficits in DIP patients might be more associated with dopaminergic loss rather than with a drug-mediated dopamine receptor blockade. These preliminary results might have prognostic and therapeutic implications, as abnormalities in these individuals may be suggestive of an underlying PD-like neurodegenerative process.
Resumo:
Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status in fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and, in particular clinical situations such as severe growth restriction or volume overload, also of venous vessels close to the heart or of flow patterns in the heart are being used to gauge the level of compensation in a fetus. Quantitative assessment of the driving force of the fetal circulation, the cardiac output, however, remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measures of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.
Resumo:
Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.
Resumo:
The assessment of executive functions is an area of study that has seen considerable development in recent years. Despite much research examining the validity of various measures of executive functions from both a direct and indirect format, little evidence exists in the extant literature evaluating the correspondence between these types of measures. The current study examined the extent of correspondence, comprising concurrent validity, between the Delis-Kaplan Executive Function System (D-KEFS) and the Behavior Rating Inventory of Executive Function ¿ Self-Report Version (BRIEF-SR). Participants included 30 undergraduate and high school students 18 years of age. Results indicated mixed evidence of concurrent validity between the two measures of executive functions. The findings obtained suggest both expected significant, negative correlation as well as lack of expected correlation between the measures. Suggestions for future research in the assessment of executive functions are discussed.
Resumo:
In Malani and Neilsen (1992) we have proposed alternative estimates of survival function (for time to disease) using a simple marker that describes time to some intermediate stage in a disease process. In this paper we derive the asymptotic variance of one such proposed estimator using two different methods and compare terms of order 1/n when there is no censoring. In the absence of censoring the asymptotic variance obtained using the Greenwood type approach converges to exact variance up to terms involving 1/n. But the asymptotic variance obtained using the theory of the counting process and results from Voelkel and Crowley (1984) on semi-Markov processes has a different term of order 1/n. It is not clear to us at this point why the variance formulae using the latter approach give different results.
Resumo:
Genetic defects of the Na+-K+-2Cl- (NKCC2) sodium potassium chloride co-transporter result in severe, prenatal-onset renal salt wasting accompanied by polyhydramnios, prematurity, and life-threatening hypovolemia of the neonate (antenatal Bartter syndrome or hyperprostaglandin E syndrome). Herein are described two brothers who presented with hyperuricemia, mild metabolic alkalosis, low serum potassium levels, and bilateral medullary nephrocalcinosis at the ages of 13 and 15 yr. Impaired function of sodium chloride reabsorption along the thick ascending limb of Henle's loop was deduced from a reduced increase in diuresis and urinary chloride excretion upon application of furosemide. Molecular genetic analysis revealed that the brothers were compound heterozygotes for mutations in the SLC12A1 gene coding for the NKCC2 co-transporter. Functional analysis of the mutated rat NKCC2 protein by tracer-flux assays after heterologous expression in Xenopus oocytes revealed significant residual transport activity of the NKCC2 p.F177Y mutant construct in contrast to no activity of the NKCC2-D918fs frameshift mutant construct. However, coexpression of the two mutants was not significantly different from that of NKCC2-F177Y alone or wild type. Membrane expression of NKCC2-F177Y as determined by luminometric surface quantification was not significantly different from wild-type protein, pointing to an intrinsic partial transport defect caused by the p.F177Y mutation. The partial function of NKCC2-F177Y, which is not negatively affected by NKCC2-D918fs, therefore explains a mild and late-onset phenotype and for the first time establishes a mild phenotype-associated SLC12A1 gene mutation.
Resumo:
Recurrent event data are largely characterized by the rate function but smoothing techniques for estimating the rate function have never been rigorously developed or studied in statistical literature. This paper considers the moment and least squares methods for estimating the rate function from recurrent event data. With an independent censoring assumption on the recurrent event process, we study statistical properties of the proposed estimators and propose bootstrap procedures for the bandwidth selection and for the approximation of confidence intervals in the estimation of the occurrence rate function. It is identified that the moment method without resmoothing via a smaller bandwidth will produce curve with nicks occurring at the censoring times, whereas there is no such problem with the least squares method. Furthermore, the asymptotic variance of the least squares estimator is shown to be smaller under regularity conditions. However, in the implementation of the bootstrap procedures, the moment method is computationally more efficient than the least squares method because the former approach uses condensed bootstrap data. The performance of the proposed procedures is studied through Monte Carlo simulations and an epidemiological example on intravenous drug users.
Resumo:
An increased or disturbed activation and aggregation of platelets plays a major role in the pathophysiology of thrombosis and haemostasis and is related to cardiovascular disease processes. In addition to qualitative disturbances of platelet function, changes in thrombopoiesis or an increased elimination of platelets, (e. g., in autoimmune thrombocytopenia), are also of major clinical relevance. Flow cytometry is increasingly used for the specific characterisation of phenotypic alterations of platelets which are related to cellular activation, haemostatic function and to maturation of precursor cells. These new techniques also allow the study of the in vitro response of platelets to stimuli and the modification thereof under platelet-targeted therapy as well as the characterisation of platelet-specific antibodies. In this protocol, specific flow cytometric techniques for platelet analysis are recommended based on a description of the current state of flow cytometric methodology. These recommendations are an attempt to promote the use of these new techniques which are at present broadly evaluated for diagnostic purposes. Furthermore, the definition of the still open questions primarily related to the technical details of the method should help to promote the multi-center evaluation of procedures with the goal to finally develop standardized operation procedures as the basis of interlaboratory reproducibility when applied to diagnostic testing.
Resumo:
Statins exert anti-inflammatory, anti-atherogenic actions. The mechanisms responsible for these effects remain only partially elucidated. Diabetes and obesity are characterized by low-grade inflammation. Metabolic and endocrine adipocyte dysfunction is known to play a crucial role in the development of these disorders and the related cardiovascular complications. Thus, direct modulation of adipocyte function may represent a mechanism of pleiotropic statin actions. We investigated effects of atorvastatin on apoptosis, differentiation, endocrine, and metabolic functions in murine white and brown adipocyte lines. Direct exposure of differentiating preadipocytes to atorvastatin strongly reduced lipid accumulation and diminished protein expression of the differentiation marker CCAAT/enhancer binding protein-beta (CEBP-beta). In fully differentiated adipocytes, however, lipid accumulation remained unchanged after chronic atorvastatin treatment. Furthermore, cell viability was reduced in response to atorvastatin treatment in proliferating and differentiating preadipocytes, but not in differentiated cells. Moreover, atorvastatin induced apoptosis and inhibited protein kinase B (AKT) phosphorylation in proliferating and differentiating preadipocytes, but not in differentiated adipocytes. On the endocrine level, direct atorvastatin treatment of differentiated white adipocytes enhanced expression of the pro-inflammatory adipokine interleukin-6 (IL-6), and downregulated expression of the insulin-mimetic and anti-inflammatory adipokines visfatin and adiponectin. Finally, these direct adipotropic endocrine effects of atorvastatin were paralleled by the acute inhibition of insulin-induced glucose uptake in differentiated white adipocytes, while protein expression of the thermogenic uncoupling protein-1 (UCP-1) in brown adipocytes remained unchanged. Taken together, our data for the first time demonstrate direct differentiation state-dependent effects of atorvastatin including apoptosis, modulation of pro-inflammatory and glucostatic adipokine expression, and insulin resistance in adipose cells. These differential interactions may explain variable clinical observations.
Resumo:
The response to beta(2)-agonists differs between asthmatics and has been linked to subsequent adverse events, even death. Possible determinants include beta(2)-adrenoceptor genotype at position 16, lung function and airway hyperresponsiveness. Fluctuation analysis provides a simple parameter alpha measuring the complex correlation properties of day-to-day peak expiratory flow. The present study investigated whether alpha predicts clinical response to beta(2)-agonist treatment, taking into account other conventional predictors. Analysis was performed on previously published twice-daily peak expiratory flow measurements in 66 asthmatic adults over three 6-month randomised order treatment periods: placebo, salbutamol and salmeterol. Multiple linear regression was used to determine the association between alpha during the placebo period and response to treatment (change in the number of days with symptoms), taking into account other predictors namely beta(2)-adrenoceptor genotype, lung function and its variability, and airway hyperresponsiveness. The current authors found that alpha measured during the placebo period considerably improved the prediction of response to salmeterol treatment, taking into account genotype, lung function or its variability, or airway hyperresponsiveness. The present study provides further evidence that response to beta(2)-agonists is related to the time correlation properties of lung function in asthma. The current authors conclude that fluctuation analysis of lung function offers a novel predictor to identify patients who may respond well or poorly to treatment.
Resumo:
Sepsis-related organ failure is the leading cause of mortality in European intensive care units (ICU). Although the inflammatory cascade of mediators in response to infection is well known, the relationships between regional inflammation, microvascular heterogeneity, hypoxia and hypoxia-inducible gene expression, and finally, organ dysfunction, are unknown. Growing evidence suggests that not only low oxygen supply to the tissues secondary to macrovascular and microvascular alterations, but also altered cellular oxygen utilization is involved in the development of multiorgan dysfunction [1]–[3]. Microbial products and innate and adaptive dysregulated immune response to infection directly affect parenchymal cells of organs and may contribute to multiorgan dysfunction.