957 resultados para Gram-Negative Infection
Resumo:
Shigella, a Gram-negative invasive enteropathogenic bacterium responsible for bacillary dysentery, causes the rupture, invasion, and inflammatory destruction of the human colonic mucosa. We explored the mechanisms of protection mediated by Shigella LPS-specific secretory IgA (SIgA), the major mucosal Ab induced upon natural infection. Bacteria, SIgA, or SIgA-S. flexneri immune complexes were administered into rabbit ligated intestinal loops containing a Peyer's patch. After 8 h, localizations of bacteria, SIgA, and SIgA-S. flexneri immune complexes were examined by immunohistochemistry and confocal microscopy imaging. We found that anti-Shigella LPS SIgA, mainly via immune exclusion, prevented Shigella-induced inflammation responsible for the destruction of the intestinal barrier. Besides this luminal trapping, a small proportion of SIgA-S. flexneri immune complexes were shown to enter the rabbit Peyer's patch and were internalized by dendritic cells of the subepithelial dome region. Local inflammatory status was analyzed by quantitative RT-PCR using newly designed primers for rabbit pro- and anti-inflammatory mediator genes. In Peyer's patches exposed to immune complexes, limited up-regulation of the expression of proinflammatory genes, including TNF-alpha, IL-6, Cox-2, and IFN-gamma, was observed, consistent with preserved morphology. In contrast, in Peyer's patches exposed to Shigella alone, high expression of the same mediators was measured, indicating that neutralizing SIgA dampens the proinflammatory properties of Shigella. These results show that in the form of immune complexes, SIgA guarantees both immune exclusion and neutralization of translocated bacteria, thus preserving the intestinal barrier integrity by preventing bacterial-induced inflammation. These findings add to the multiple facets of the noninflammatory properties of SIgA.
Resumo:
Opportunistic infections, which affect acquired immunodeficiency syndrome (Aids) patients, are frequently disseminated and may cause bloodstream infections (BSI). The aim of this study was to evaluate the main causes of BSI in Aids patients with advanced stage of the disease, with special emphasis on the identification of fungemia. During a 21 months period, all patients with Aids (CD4 < 200) and febrile syndrome admitted to 3 university hospitals were systematically evaluated. For each patient presenting fever, a pair of blood cultures was collected and processed by using a commercial lysis-centrifugation system. One hundred and eleven patients (75 males) with a mean age of 36 years (median 33 years) and mean CD4 count of 64 cells/ml were included. Among the 111 patients evaluated we documented 54 episodes of BSI, including 46 patients with truly systemic infections and 8 episodes considered as contaminants. BSI were caused by gram-positive bacteria (43%), fungi (20%), gram-negative bacteria (15%), mycobacteria (15%), and mixed flora (7%). The crude mortality rate of our patients was 39%, being 50% for patients with BSI and 31% for the others. In conclusion, BSI are a common related to systemic infections on Aids patients with advanced stage of disease and is associated with a high rate of mortality.
Resumo:
Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.
Resumo:
A prospective study of fungal and bacterial flora of burn wounds was carried out from February 2004 to February 2005 at the Burns Unit of Hospital Regional da Asa Norte, Brasília, Brazil. During the period of the study, 203 patients were treated at the Burns Unit. Wound swab cultures were assessed at weekly intervals for four weeks. Three hundred and fifty four sampling procedures (surface swabs) were performed from the burn wounds. The study revealed that bacterial colonization reached 86.6% within the first week. Although the gram-negative organisms, as a group, were more predominant, Staphylococcus aureus (28.4%) was the most prevalent organism in the first week. It was however surpassed by Pseudomonas aeruginosa form third week onwards. For S. aureus and P. aeruginosa vancomycin and polymyxin were found to be the most effective drugs. Most of the isolates showed high level resistance to antimicrobial agents. Fungi were found to colonize the burn wound late during the second week postburn, with a peak incidence during the third and fourth weeks. Species identification of fungi revealed that Candida tropicalis was the most predominant, followed by Candida parapsilosis. It is crucial for every burn institution to determine the specific pattern of burn wound microbial colonization, the time-related changes in the dominant flora, and the antimicrobial sensitivity profiles. This would enable early treatment of imminent septic episodes with proper empirical systemic antibiotics, without waiting for culture results, thus improving the overall infection-related morbidity and mortality.
Resumo:
Bartonellae are fastidious Gram-negative bacteria that are widespread in nature with several animal reservoirs (mainly cats, dogs, and rodents) and insect vectors (mainly fleas, sandflies, and human lice). Thirteen species or subspecies of Bartonella have been recognized as agents causing human disease, including B. bacilliformis, B. quintana, B. vinsonii berkhoffii, B. henselae, B. elizabethae, B. grahamii, B. washoensis, B. koehlerae, B. rocha-limaea, and B. tamiae. The clinical spectrum of infection includes lymphadenopathy, fever of unknown origin, endocarditis, neurological and ophthalmological syndromes, Carrion's disease, and others. This review provides updated information on clinical manifestations and seroepidemiological studies with an emphasis on data available from Brazil.
Resumo:
Infections of the catheter wound in peritoneal dialysis are the most frequent cause of morbility in patients who undergo this technique. There are a number of procedures for the care of the wound and it is not easy to define a single method that will guarantee good condition of the wound. In order to evaluate the behaviour of the wound related to the procedure used in their care, we studied 306 patients over 24 months, compiling socio-demographic and clinical variables. We found a high incidence of infections caused by gram-positive skin and mucous germs, with a strong correlation with the fact that the patient/family carer is a nasal carrier of staphylococcus aureus and that they appear more frequently in patients who do not remove the wound dressing in the shower. We also detected an increase in pseudomonas infections when the patient does not dry the wound with a hair-dryer
Resumo:
A ciprofloxacin-resistant Escherichia coli isolate, isolate 1B, was obtained from a urinary specimen of a Canadian patient treated with norfloxacin for infection due to a ciprofloxacin-susceptible isolate, isolate 1A. Both isolates harbored a plasmid-encoded sul1-type integron with qnrA1 and blaVEB-1 genes. Isolate 1B had amino acid substitutions in gyrase and topoisomerase.
Resumo:
We describe a case of bacteremia due to an as yet unclassified Acinetobacter genomic species 17-like strain. The recognition of this microorganism as non-Acinetobacter baumannii may have important epidemiological implications, as it relieves the hospital of the implementation of barrier precautions for patients infected or colonized as may be necessary with a multiresistant A. baumannii epidemic.
Resumo:
Extended-spectrum β-lactamases (ESBLs) form a heterogeneous group that share the property of hydrolytic activity against the oxyimino-β-lactams while remaining susceptible to inhibition by β-lactamase inhibitors, such as clavulanic acid. From a clinical point of view, they are important because they confer resistance to penicillins, aztreonam, and cephalosporins, and ESBL-producing organisms are typically also resistant to aminoglycosides, trimethoprim-sulfamethoxazole, and quinolones [1]. Until recently, the main problem posed by ESBLs was related to nosocomial outbreaks caused by ESBL-producing Klebsiella species. These outbreaks are usually clonal, the strains are mainly spread through cross-transmission, and the risk factors are similar to those found for other multidrug-resistant nosocomial pathogens [2]. In Europe and the United States, most ESBL-producing Klebsiella isolates harbored enzymes belonging to the TEM and SHV families [3]. Detection of colonized patients by performing surveillance cultures within affected units, isolation precautions for colonized patients, and restriction of oxyimino-β-lactam use are frequently useful for the control of these outbreaks [1]. There is no evidence that hospital-acquired ESBL-producing klebsiellae are decreasing in importance—in fact, data from the Centers for Disease Control and Prevention show that 20.6% of Klebsiella pneumoniae isolates from United States intensive care units in 2003 were probable producers of ESBL [4]. This represented a 47% increase, compared with the preceding 5 years. However, during the last few years, an impressive increase in the number of ESBL-producing Escherichia coli (and, less frequently, other Enterobacteriaceae) is being described in several parts of the world [5–8]. This emergent phenomenon shows some differences from the problem posed by Klebsiella species; many of these ESBL-producing E. coli are isolated …
Resumo:
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, particularly those producing CTX-M types of ESBL, are emerging pathogens. Bacteremia caused by these organisms represents a clinical challenge, because the organisms are frequently resistant to the antimicrobials recommended for treatment of patients with suspected E. coli sepsis. METHODS:A cohort study was performed that included all episodes of bloodstream infection due to ESBL-producing E. coli during the period from January 2001 through March 2005. Data on predisposing factors, clinical presentation, and outcome were collected. ESBLs were characterized using isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-three episodes (8.8% of cases of bacteremia due to E. coli) were included; 70% of the isolates produced a CTX-M type of ESBL. The most frequent origins of infection were the urinary (46%) and biliary tracts (21%). Acquisition was nosocomial in 21 cases (49%), health care associated in 14 cases (32%), and strictly community acquired in 8 cases (19%). Thirty-eight percent and 25% of patients had obstructive diseases of the urinary and biliary tracts, respectively, and 38% had recently received antimicrobials. Nine patients (21%) died. Compared with beta-lactam/beta-lactamase-inhibitor and carbapenem-based regimens, empirical therapy with cephalosporins or fluoroquinolones was associated with a higher mortality rate (9% vs. 35%; P=.05) and needed to be changed more frequently (24% vs. 78%; P=.001). CONCLUSIONS: ESBL-producing E. coli is a significant cause of bloodstream infection in hospitalized and nonhospitalized patients in the context of the emergence of CTX-M enzymes. Empirical treatment of sepsis potentially caused by E. coli may need to be reconsidered in areas where such ESBL-producing isolates are present.
Resumo:
Reduction of the antioxidant capacity of plasma has been linked with the impairment of an effective immune response and so we hypothesized that the carriage rate of Neisseria meningitidis in asymptomatic subjects might correlate with the levels of antioxidants in plasma. To this end we took pharyngeal swabs from 339 children in Marquesado Basic Health Zone, Granada, Spain and in addition determined the total antioxidant capacity (TAC) in plasma samples from these subjects. The overall prevalence of N. meningitidis carriage was 5.9% (mean age 7.1 years) with rates of 10.3% in children aged 3 < or =years, 3.9% between 4 and 7 years and 2.4% in older subjects. Plasma TAC for the < or =3-year-olds was 0.13 for carriers and 1.10 for non-carrier controls (P=0.04), 0.13 for carriers aged 4-7 years (controls 0.63) and 0.28 for carriers aged >7 years (controls 0.52). We analysed the association between TAC in plasma (<0.37 - 2 S.D.) and the carrier state of N. meningitidis. In the carrier state, the odds ratio for this association (TAC in plasma <0.25) was 8.44 (95% CI 1.5-48.9). These findings may suggest a reduced immune response in the host favourable to nasopharyngeal persistence of meningococci.
Resumo:
Owing to increasing resistance and the limited arsenal of new antibiotics, especially against Gram-negative pathogens, carefully designed antibiotic regimens are obligatory for febrile neutropenic patients, along with effective infection control. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for initial empirical therapy in febrile neutropenic patients, based on: i) the local resistance epidemiology; and ii) the patient's risk factors for resistant bacteria and for a complicated clinical course. An 'escalation' approach, avoiding empirical carbapenems and combinations, should be employed in patients without particular risk factors. A 'de-escalation' approach, with initial broad-spectrum antibiotics or combinations, should be used only in those patients with: i) known prior colonization or infection with resistant pathogens; or ii) complicated presentation; or iii) in centers where resistant pathogens are prevalent at the onset of febrile neutropenia. In the latter case, infection control and antibiotic stewardship also need urgent review. Modification of the initial regimen at 72-96 h should be based on the patient's clinical course and the microbiological results. Discontinuation of antibiotics after 72 h or later should be considered in neutropenic patients with fever of unknown origin who are hemodynamically stable since presentation and afebrile for at least 48 h, irrespective of neutrophil count and expected duration of neutropenia. This strategy aims to minimize the collateral damage associated with antibiotic overuse, and the further selection of resistance.
Resumo:
Between March and May of 2011, a cluster of three fatal cases of meningococcal sepsis occurred in Andalusia, Spain, in a municipality with a population of around 20,000 inhabitants. The cases were in their mid-teens to early thirties and were notified to the epidemiological surveillance system of Andalusia (Sistema de Vigilancia Epidemiológica de Andalucía, SVEA) during a 68-day period from March through May 2011. All three were infected with the same strain of Neisseria meningitidis serogroup C genosubtype VR1:5-1;VR2:10-8. None of the cases had been previously vaccinated against N. meningitidis serogroup C. Antibiotic post-exposure chemoprophylaxis was administered to close contacts of every diagnosed case. Once the cluster was confirmed, the local population was informed through the media about the control measures taken by the health authorities. The vaccination history against N. meningitidis serogroup C of the population under 25 years-old in the municipality was checked. Vaccination was offered to unimmunised individuals younger than 25 years of age and an additional dose of vaccine was offered to those who had been vaccinated between 2000 and 2006 with a vaccination schedule of three doses before the first year of age. No further cases occurred since the beginning of these actions.
Resumo:
Goal: To study an August 2004 outbreak of brucellosis notified in Velez-Rubio (Almeria) and to determine the source of that infection as well as its transmission mechanisms, in addition to proposing preventive measures. Methodology: Descriptive study and paired case controls (three controls were selected for each case). Setting: Health Centers in de Vélez-Rubio (Almeria) and Alcalá de Guadaira (Seville). Population: Suspected/probable case: a person with compatible clinical symptoms and positive brusella agglutination diagnosed between July 2005 and March 2005. Confirmed case: in addition to identifying the causal agent, laboratory test results resulted in a confirmation. Interventions: Report forms, epidemiological surveys, clinical histories, and laboratory tests were used as sources of data. Odds ratios (OR) and confidence intervals were calculated to study the relationship among cases, sources of infection, and transmission mechanisms. The Chi Square test and Yates correction were employed. Results: 10 cases were identified (9 in Almeria and 1 in Seville), 8 of them pobable and 2 confirmed, in persons between the ages of 45 and 81. The symptoms first appeared between the months of May and September 2005. Fever was the most frequent symptom (100%). The OR for the consumption of fresh, non.-pasteurized cheese was 112 (CI 4,48-16968,94), p< 0,001. Infected animals were intervened. Conclusions: The inter-provincial outbreak of brucellosis was confirmed as stemming from the consumption of non-pasteurized cheese sold on the street. The source of infection was identified and the Department of Agriculture carried out the necessary actions.
Resumo:
Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. are a major cause of infections in hospitalised patients. The aim of our study was to evaluate rates and trends of resistance to third-generation cephalosporins and fluoroquinolones in infected patients, the trends in use for these antimicrobials, and to assess the potential correlation between both trends. The database of national point prevalence study series of infections and antimicrobial use among patients hospitalised in Spain over the period from 1999 to 2010 was analysed. On average 265 hospitals and 60,000 patients were surveyed per year yielding a total of 19,801 E. coli, 3,004 K. pneumoniae and 3,205 Enterobacter isolates. During the twelve years period, we observed significant increases for the use of fluoroquinolones (5.8%-10.2%, p<0.001), but not for third-generation cephalosporins (6.4%-5.9%, p=NS). Resistance to third-generation cephalosporins increased significantly for E. coli (5%-15%, p<0.01) and for K. pneumoniae infections (4%-21%, p<0.01) but not for Enterobacter spp. (24%). Resistance to fluoroquinolones increased significantly for E. coli (16%30%, p<0.01), for K. pneumoniae (5%-22%, p<0.01), and for Enterobacter spp. (6%-15%, p<0.01). We found strong correlations between the rate of fluoroquinolone use and the resistance to fluoroquinolones, third-generation cephalosporins, or co-resistance to both, for E. coli (R=0.97, p<0.01, R=0.94, p<0.01, and R=0.96, p<0.01, respectively), and for K. pneumoniae (R=0.92, p<0.01, R=0.91, p<0.01, and R=0.92, p<0.01, respectively). No correlation could be found between the use of third-generation cephalosporins and resistance to any of the latter antimicrobials. No significant correlations could be found for Enterobacter spp.. Knowledge of the trends in antimicrobial resistance and use of antimicrobials in the hospitalised population at the national level can help to develop prevention strategies.