992 resultados para Graft-versus-host
Resumo:
We evaluated the effect of acute and chronic GVHD on relapse and survival after allogeneic hematopoietic SCT (HSCT) for multiple myeloma using non-myeloablative conditioning (NMA) and reduced-intensity conditioning (RIC). The outcomes of 177 HLA-identical sibling HSCT recipients between 1997 and 2005, following NMA (n = 98) or RIC (n = 79) were analyzed. In 105 patients, autografting was followed by planned NMA/RIC allogeneic transplantation. The impact of GVHD was assessed as a time-dependent covariate using Cox models. The incidence of acute GVHD (aGVHD; grades I-IV) was 42% (95% confidence interval (CI), 35-49%) and of chronic GVHD (cGVHD) at 5 years was 59% (95% CI, 49-69%), with 70% developing extensive cGVHD. In multivariate analysis, aGVHD (>= grade I) was associated with an increased risk of TRM (relative risk (RR) = 2.42, P = 0.016), whereas limited cGVHD significantly decreased the risk of myeloma relapse (RR = 0.35, P = 0.035) and was associated with superior EFS (RR = 0.40, P = 0.027). aGVHD had a detrimental effect on survival, especially in those receiving autologous followed by allogeneic HSCT (RR = 3.52, P = 0.001). The reduction in relapse risk associated with cGVHD is consistent with a beneficial graft-vs-myeloma effect, but this did not translate into a survival advantage. Bone Marrow Transplantation (2012) 47, 831-837; doi:10.1038/bmt.2011.192; published online 26 September 2011
Resumo:
Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.
Resumo:
Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24(+)Vbeta11(+) NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4(+) NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.
Resumo:
hematopoietic stem cell transplantation (HSCT) is associated with more respiratory infections due to immunosuppression. this study aimed to verify the frequency of rhinosinusitis after HSCT, and the association between rhinosinusitis and chronic graft vs. host disease (GVHD) and type of transplantation, clinical treatment, surgical treatment, and survival. this was a retrospective study in a tertiary university hospital. A total of 95 patients with hematological diseases undergoing HSCT between 1996 and 2011 were selected. chronic myeloid leukemia was the most prevalent disease. The type of transplant most often performed was the allogenic type (85.26%). The frequency of rhinosinusitis was 36%, with no difference between the autologous and the allogenic types. Chronic GVHD occurred in 30% of patients. Patients with GVHD had a higher frequency and recurrence of rhinosinusitis, in addition to more frequent need for endoscopic sinusectomy and decreased overall survival. there was a higher frequency of rhinosinusitis in HSCT and GVHD. The type of transplant does not appear to predispose to the occurrence of rhinosinusitis. GVHD seems to be an aggravating factor and requires a more stringent treatment.
Resumo:
The initiation of graft vs. host disease (GVHD) after stem cell transplantation is dependent on direct antigen presentation by host antigen presenting cells (APC) while the effect of indirect antigen presentation by donor APC is unknown. We have studied the role of indirect antigen presentation in allogenic responses by adding populations of cytokine-expanded donor APC to haematopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 L molecule) and G-CSF expanded myeloid DC, plasmacytoid DC and a novel granulocyte-monocyte precursor population (GM) that differentiate into class IIpos, CD80/CD86pos, CD40neg APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells induced transplant tolerance via MHC class II restricted generation of IL-10-secreting regulatory T cells. Thus a population of cytokine expanded granulocyte-monocyte precursors function as regulatory antigen presenting cells, suggesting that G-CSF derivatives may have application in disorders characterised by a loss of self-tolerance.
Resumo:
Because CD4(+) T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4(+) T cells could enhance an antitumor response mediated by similarly gene-engineered CD8(+) T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4(+) and CD8(+) cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4(+) and CD8(+) T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2(+) tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8(+) and CD4(+) T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8(+)) engineered T cells. Transferred CD4(+) T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent re-challenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8(+) and CD4(+) T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.
Resumo:
Purpose: To analyze the influence of thermal partial punctal occlusion on the ocular surface of dry eye related to Sjogren syndrome. Material and Methods: Thirty-seven eyes of 19 patients (3 male and 16 female; 49.11 +/- 14.33 years old) with keratoconjunctivitis sicca were enrolled in this study. Superior and inferior partial occlusion were performed in both eyes under topical anesthesia using thermal cautery with a sterile tip to obtain lacrimal punctum smaller than 0.5 mm. Schirmer I, break-up-time, diameter of lacrimal puncta, corneal fluorescein, and rose Bengal staining scores were analyzed before and after 24 weeks and after 24 months of the procedure. All measurements were performed under controlled climate. Results: The average lacrimal punctum diameter before the procedure was 0.65 +/- 0.134 mm. All lacrimal puncta were successfully reduced to less than 0.5 mm after 4 weeks of the procedure. The average Schirmer I test values improved statistically after 24 weeks and maintained stable after 24 months. Average break-up-time, rose Bengal, and fluorescein staining score values improved statistically after 24 weeks and improved even more after 24 months. Average Schirmer I test, break-up-time, rose Bengal, and fluorescein staining scores showed significant improvement (p < 0.0001) after 24 months of partial thermal punctal occlusion. Conclusion: Our study showed that reducing the punctum diameter to 0.5 mm can improve vital staining scores, break-up-time, and Schirmer I test in dry eye related to Sjogren syndrome.
Resumo:
Dendritic cells belong to a family of antigen-presenting cells that are localized at the entry sites, such as skin and mucosa. Dendritic cells are related to immune surveillance function. The role of Langerhans cells in the pathogenesis of skin infectious diseases is well studied; however, there are few articles addressing involvement of factor XIIIa-positive dermal dendrocytes (FXIIIa+ DD) in such processes. FXIIIa+ DDs are bone marrow-monocytic lineage-derived cells and members of the skin immune system. Due to their immune phenotype and functional characteristics, they are considered complementary cells to Langerhans cells in the process of antigen presentation and inducing immune response. To verify the interaction between FXIIIa+ DD and Leishmania amastigotes, 22 biopsies of American tegumentary leishmaniasis (ATL) skin lesions were subjected to double staining technique with anti-factor XIIIa and anti-Leishmania antibodies. FXIIIa+ DDs were hypertrophic and abundant in the cutaneous reaction of ATL. FXIIIa+ DDs harboring parasites were observed in I I of 22 skin biopsies. The data obtained suggest that FXIIIa+ DD plays a role in the pathogenesis of ATL skin lesion as host cell, immune effector, and/or antigen-presenting cell.
Resumo:
The local and systemic treatment of tumors can cause changes in the skin, mucous membranes, hair and nails. Accurate diagnosis and appropriate treatment of side effects require knowledge about the patterns of the most common adverse reactions to drugs the patient may be using. The dermatologist must be familiar with the manifestations of certain soft tissue neoplasms, as well as with the adverse mucocutaneous forms of cancer treatment.
Resumo:
Cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) play an important role in glioma invasion and angiogenesis. The aim of this study was to investigate whether specific genetic polymorphisms of ICAM-1 and PECAM-1 could be associated with glioma development and progression. Single-nucleotide polymorphism in codon 469 of ICAM-1 and codon 125 of PECAM-1 were examined in 158 patients with astrocytomas and 162 controls using polymerase chain reaction and restriction enzyme analysis. The distribution of PECAM-1 polymorphic genotypes in astrocytomas did not show any significant difference. However, a specific ICAM-1 genotype (G/G, corresponding to Lys469Glu) exhibited higher frequency in grade II astrocytomas compared to controls, grade III, and grade IV astrocytomas; suggesting that this polymorphism could be involved in the development of grade II astrocytomas.
Resumo:
Purpose of review Today the indication for allogeneic stem cell transplantation for a high-risk leukaemia in first remission is well defined by most centres. In patients with primary refractory leukaemia the indication is controversially discussed. Similarly patients with relapse and advanced disease have a poor prognosis with chemotherapy, but also with transplantation. Finally more elderly patients with comorbidities seek help from transplantation, most of them in advanced and otherwise refractory disease. The results are reviewed. Recent findings The role of alloimmunity in the control of leukaemia has been defined and pretransplant conditioning treatment could be reduced to less intensive protocols. Graft-versus-leukaemia reactions have been demonstrated with the transfusion of donor lymphocytes. Using nonmyeloablative regimens allogeneic stem cell transplantation could be offered to elderly patients, the majority of patients with acute myeloid leukaemia and myelodysplastic syndromes. The use of antibodies and radio-immunotherapy has improved the treatment of lymphoid malignancies. Cord blood transplants have shown improved results with double transplants. The superiority of maternal donors indicates a role of the donor`s immune repertoire. Summary Taking advantage of alloimmune reactions and reduced intensity conditioning allogeneic stem cell transplantation has become successful even in elderly and fragile patients. The combination of molecular monitoring, targeted therapy and transplantation as a form of immunotherapy may improve the results of leukaemia treatment further.
Resumo:
Mesenchymal stromal cells (MSCs) suppress T cell responses through mechanisms not completely understood. Adenosine is a strong immunosuppressant that acts mainly through its receptor A(2a) (ADORA2A). Extracellular adenosine levels are a net result of its production (mediated by CD39 and CD73), and of its conversion into inosine by Adenosine Deaminase (ADA). Here we investigated the involvement of ADO in the immunomodulation promoted by MSCs. Human T lymphocytes were activated and cultured with or without MSCs. Compared to lymphocytes cultured without MSCs, co-cultured lymphocytes were suppressed and expressed higher levels of ADORA2A and lower levels of ADA. In co-cultures, the percentage of MSCs expressing CD39, and of T lymphocytes expressing CD73, increased significantly and adenosine levels were higher. Incubation of MSCs with media conditioned by activated T lymphocytes induced the production of adenosine to levels similar to those observed in co-cultures, indicating that adenosine production was mainly derived from MSCs. Finally, blocking ADORA2A signaling raised lymphocyte proliferation significantly. Our results suggest that some of the immunomodulatory properties of MSCs may, in part, be mediated through the modulation of components related to adenosine signaling. These findings may open new avenues for the development of new treatments for GVHD and other inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lichen planus is a disorder characterized by lesions of the skin and oral mucous membranes. Although many patients have involvement of both skin and oral mucosa at some stage during the progress of the disease, a larger group has oral involvement alone. It has been reported that oral lichen planus (OLP) affects one to two percent of the general population and has the potential for malignant transformation in some cases (1, 2). Like many chronic inflammatory skin diseases, it often persists for many years. Numerous disorders may be associated with OLP such as graft-vs.-host disease and Hepatitis C virus infection (3), however, it is unclear how such diverse influences elicit the disease and indeed whether they are identical to idiopathic OLP Available evidence supports the view that OLP is a cell-mediated immunological response to an induced antigenic change in the mucosa (4-6). Studies of the immunopathogenesis of OLP aim to provide specific novel treatments as well as contributing to our understanding of other cell-mediated inflammatory diseases. In this paper, the interactions between mast cells and T cells are explored from the standpoint of immune regulation. From these data, a unifying hypothesis for the immunopathogenesis of OLP is then developed and presented.
Resumo:
Mast cells are mobile granule-containing secretory cells that are distributed preferentially about the microvascular endothelium in oral mucosa and dental pulp. The enzyme profile of mast cells in oral tissues resembles that of skin, with most mast cells expressing the serine proteases tryptase and chymase. Mast cells in oral tissues contain the pro-inflammatory cytokine tumour necrosis factor-alpha in their granules, and release of this promotes leukocyte infiltration during evolving inflammation in several conditions, including lichen planus, gingivitis, pulpitis, and periapical inflammation, through induction of endothelial-leukocyte adhesion molecules. Mast cell synthesis and release of other mediators exerts potent immunoregulatory effects on other cell types, while several T-lymphocyte-derived cytokines influence mast cell migration and mediator release. Mast cell proteases may contribute to alterations in basement membranes in inflammation in the oral cavity, such as the disruptions that allow cytotoxic lymphocytes to enter the epithelium in oral lichen planus. A close relationship exists among mast cells, neural elements, and laminin, and this explains the preferential distribution of mast cells in tissues. Mast cells are responsive to neuropeptides and, through their interaction with neural elements, form a neural immune network with Langerhans cells in mucosal tissues. This facilitates mast cell degranulation in response to a range of immunological and non-immunological stimuli. Because mast cells play a pivotal role in inflammation, therapies that target mast cell functions could have value in the treatment of chronic inflammatory disorders in the oral cavity.