975 resultados para Glycine Residues
Resumo:
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA) before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.
Resumo:
safefood, the Food Safety Promotion Board, is responsible for increasing food safety awareness and for supporting north/south scientific co-operation. safefood is currently funding a project entitled "Poultry Meat: improving food safety by improving chemical residue surveillance". This joint project between the Veterinary Sciences Division, Queen's University, Belfast and the National Food Centre, Teagasc, Dublin, is addressing the problem of anti-coccidial drug residues in poultry meat and eggs through an all-island research and residue testing initiative. The project started in 2001 and will continue until 2004. Poultry have a high susceptibility to the parasitic disease, coccidiosis. Because of this susceptibility, veterinary drugs, commonly known as coccidiostats are routinely used in intensively-reared poultry. The coccidiostats are potent drugs and, where residues occur in food, they may exacerbate certain coronary disease conditions. It is important, therefore, for poultry and egg producers to prevent the occurrence of residues of coccidiostats in food products.
Resumo:
The medulla oblongata (MO) contains a high density of glycinergic synapses and a particularly high concentration of glycine. The aims of this study were to measure directly in vivo the neurochemical profile, including glycine, in MO using a spin-echo-based (1)H MRS sequence at TE?=?2.8 ms and to compare it with three other brain regions (cortex, striatum and hippocampus) in the rat. Glycine was quantified in MO at TE?=?2.8 ms with a Cramér-Rao lower bound (CRLB) of approximately 5%. As a result of the relatively low level of glycine in the other three regions, the measurement of glycine was performed at TE?=?20 ms, which provides a favorable J-modulation of overlapping myo-inositol resonance. The other 14 metabolites composing the neurochemical profile were quantified in vivo in MO with CRLBs below 25%. Absolute concentrations of metabolites in MO, such as glutamate, glutamine, ?-aminobutyrate, taurine and glycine, were in the range of previous in vitro quantifications in tissue extracts. Compared with the other regions, MO had a three-fold higher glycine concentration, and was characterised by reduced (p?<?0.001) concentrations of glutamate (-50?±?4%), glutamine (-54?±?3%) and taurine (-78?±?3%). This study suggests that the functional specialisation of distinct brain regions is reflected in the neurochemical profile.
Resumo:
In the present study, we have explored ways of inducing a CTL response to a previously defined H-2Kd MHC class I restricted epitope in the circumsporozoite (CS) protein of Plasmodium berghei, and studied in detail the fine specificity of the response. We found that the s.c. injection of a variety of synthetic peptides emulsified in Freund's adjuvant efficiently induced a specific CTL response in (BALB/c x C57BL/6)F1 (H-2d x H-2b) mice. In contrast, BALB/c mice responded only marginally, consistent with the possible requirement for a concomitant Th response that would be provided by the C57BL/6 strain. Similar to our previous observations in analyzing CTL clones from sporozoite-immunized mice, the CTL response induced by peptide immunization was in part cross-reactive with an epitope from the Plasmodium yoelii species. The minimal P. berghei CS epitope, the octapeptide PbCS 253-260, was studied in detail by the analysis of a series of variant CS peptides containing single Ala substitutions. The relative antigenic activity for each variant peptide was calculated for 28 different CTL clones. Overall, the response to this P. berghei CTL epitope appeared to be extremely diverse in terms of fine specificity. This was evident among the CTL derived from sporozoite-immunized mice, as well as among those from peptide-immunized animals. The heterogeneity found at the functional level correlates with the highly diverse TCR repertoire that we have found for the same series of CTL clones in a study that is reported separately. The relative competitor activity for each Ala-substituted peptide was also determined in a quantitative functional competition assay. For the residues (Tyr253 and Ile260) within the 8-mer CS peptide, substitution with Ala reduced competitor activity by at least 40-fold, and for two others the reduction was 5- to 10-fold. When the relative antigenic activity for each CTL/peptide combination was normalized to the relative competitor activity of the peptide, a striking pattern emerged. The two residues that most affected competitor activity showed no additional effect on recognition beyond that observed for competition. In marked contrast, Ala substitutions at the other five positions tested varied widely, depending on the CTL/peptide combination. This pattern not only supports a model whereby the Tyr253 and Ile260 residues anchor the peptide to the Kd molecule, but also implies that they are virtually inaccessible to the TCR.
Resumo:
BACKGROUND: Glioblastoma multiforme (GBM), a highly invasive and vascular cancer, responds poorly to conventional cytotoxic therapy. Integrins, widely expressed in GBM and tumor vasculature, mediate cell survival, migration and angiogenesis. Cilengitide is a potent alphavbeta3 and alphavbeta5 integrin inhibitor. OBJECTIVE: To summarize the preclinical and clinical experience with cilengitide for GBM. METHODS: Preclinical studies and clinical trials evaluating cilengitide for GBM were reviewed. RESULTS/CONCLUSIONS: Cilengitide is active and synergizes with external beam radiotherapy in preclinical GBM models. In clinical trials for recurrent GBM, single-agent cilengitide has antitumor benefits and minimal toxicity. Among newly diagnosed GBM patients, single-arm studies incorporating cilengitide into standard external beam radiotherapy/temozolomide have shown encouraging activity with no increased toxicity and have led to a planned randomized Phase III trial.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using (13)C- and (31)P-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N(2) fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.
Resumo:
Fatty acids distribution and stable isotope ratios (bulk delta(13)C. delta(15)N and delta(13)C of individual fatty acids) of organic residues from 30 potsherds have been used to get further insights into the diet at the Late Neolithic (3384-3370 BC) site of Arbon Bleiche 3. Switzerland. The results are compared with modern equivalents of animal and vegetable fats, which may have been consumed ill a mixed ecology community having agrarian, breeding, shepherd, gathering, hunting, and fishing activities. The used combined chemical and isotopic approach provides valuable information to complement archaeological indirect evidence about the dietary trends obtained from the analysis of faunal and plant remains. The small variations of the delta(13)C and delta(15)N values within the range expected for degraded animal and plant tissues, is consistent with the archaeological evidence of animals, whose subsistence was mainly based on C(3) plants. The overall fatty acid composition and the stable carbon isotopic compositions of palmitic, stearic and oleic acids of the organic residues indicate that the studied Arbon Bleiche 3 sherds contain fat residues of plant and animal origin, most likely ruminant (bovine and ovine). In several vessels the presence of milk residues provides direct evidence for dairying during the late Neolithic in central Europe. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
A panel of 15 single alanine substitutions on the floor of the peptide binding groove of the murine class I histocompatibility molecule H-2Kd has been analyzed. All but two mutant molecules were expressed on the cell surface, and were tested for peptide binding and presentation to specific cytotoxic T lymphocytes. Eleven out of 13 mutant molecules appeared to be functionally altered. Five of the substituted residues were involved in the presentation of all peptides tested. Three participated in the presentation of certain peptides but not others. Three other residues participated in epitope formation through indirect interactions. Only two mutations had no detectable effect.
Resumo:
Parasitoid Hymenoptera collected in a soybean plantation (Glycine max (L.)) Merril (Fabaceae) at the municipal district of Nuporanga, SP, Brazil. Parasitoid Hymenoptera were collected by using Moericke trap placed in a soybean plantation (Glycine max (L.) Merril) (Fabaceae) of the variety Conquista, during the period of March 24th to April 7th, 2000. A total of 4,969 specimens of parasitoids, belonging to seven superfamilies and 15 families, were collected. Scelionidae, Encyrtidae, Aphelinidae and Trichogrammatidae were the most common families, being responsible for 41.66%, 19.42%, 11.19% and 7.35% of the total number of parasitoids collected, respectively. Other eleven families showed the relative frequency lower than 5%.
Resumo:
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.
Resumo:
Active protein-disaggregation by a chaperone network composed of ClpB and DnaK + DnaJ + GrpE is essential for the recovery of stress-induced protein aggregates in vitro and in Escherichia coli cells. K-glutamate and glycine-betaine (betaine) naturally accumulate in salt-stressed cells. In addition to providing thermo-protection to native proteins, we found that these osmolytes can strongly and specifically activate ClpB, resulting in an increased efficiency of chaperone-mediated protein disaggregation. Moreover, factors that inhibited the chaperone network by impairing the stability of the ClpB oligomer, such as natural polyamines, dilution, or high salt, were efficiently counteracted by K-glutamate or betaine. The combined protective, counter-negative and net activatory effects of K-glutamate and betaine, allowed protein disaggregation and refolding under heat-shock temperatures that otherwise cause protein aggregation in vitro and in the cell. Mesophilic organisms may thus benefit from a thermotolerant osmolyte-activated chaperone mechanism that can actively rescue protein aggregates, correctly refold and maintain them in a native state under heat-shock conditions.