925 resultados para Glutamatergic Pathway
Resumo:
SUMMARY : Two-component systems are key mediators implicated in the response of numerous bacteria to a wide range of signals and stimuli. The two-component system comprised of the sensor kinase GacS and the response regulator GacA is broadly distributed among γ-proteobacteria bacteria and fulfils diverse functions such as regulation of carbon storage and expression of virulence. In Pseudomonas fluorescens, a soil bacterium which protects plants from root-pathogenic fungi and nematodes, the GacS/GacA two-component system has been shown to be essential for the production of secondary metabolites and exoenzymes required for the biocontrol activity of the bacterium. The regulatory cascade initiated by GacS/GacA consists of two translational repressor proteins, RsmA and RsmE, as well as three GacAcontrolled small regulatory RNAs RsmX, RsmY and RsmZ, which titrate RsmA and RsmE to allow the expression of biocontrol factors. Genetic analysis revealed that two additional sensor kinases termed RetS and Lads were involved as negative and positive control elements, respectively, in the Gac/Rsm pathway in P. fluoresens CHAO. Furthermore, it could be proposed that RetS and Lads interact with GacS, thereby modulating the expression of antibiotic compounds and hydrogen cyanide, as well as the rpoS gene encoding the stress and stationary phase sigma factor σ. Temperature was found to be an important environmental cue that influences the Gac/Rsm network. Indeed, the production of antibiotic compounds and hydrogen cyanide was reduced at 35°C, by comparison with the production at 30°C. RetS was identified to be involved in this temperature control. The small RNA RsmY was confirmed to be positively regulated by GacA and RsmA/RsmE. Two essential regions were identified in the rsmY promoter by mutational analysis, the upstream activating sequence (UAS) and the linker sequence. Although direct experimental evidence is still missing, several observations suggest that GacA may bind to the UAS, whereas the linker region would be recognized by intermediate RsmA/RsmEdependent repressors and/or activators. In conclusion, this work has revealed new elements contributing to the function of the signal transduction mechanisms in the Gac/Rsm pathway. RESUME : Les systèmes ä deux composants sont des mécanismes d'une importance notoire que beaucoup de bactéries utilisent pour faire face et répondre aux stimuli environnementaux. Le système à deux composants comprenant le senseur GacS et le régulateur de réponse GacA est très répandu chez les γ-protéobactéries et remplit des fonctions aussi diverses que la régulation du stockage de carbone ou l'expression de la virulence. Chez Pseudomonas fluorescens CHAO, une bactérie du sol qui protège les racines des plantes contre des attaques de champignons et nématodes pathogènes, le système à deux composants GacS/GacA est essentiel à la production de métabolites secondaires et d'exoenzymes requis pour l'activité de biocontrôle de la bactérie. La cascade régulatrice initiée pas GacS/GacA fait intervenir deux protéines répresseur de traduction, RsmA et RsmE, ainsi que trois petits ARNs RsmX, RsmY et RsmZ, dont la production est contrôlée par GacA. Ces petits ARNs ont pour rôle de contrecarrer l'action des protéines répressseur de la traduction, ce qui permet l'expression de facteurs de biocontrôle. Des analyses génétiques ont révélé la présence de deux senseurs supplémentaires, appelés Rets et Lads, qui interviennent dans la cascade Gac/Rsm de P. fluorescens. L'impact de ces senseurs est, respectivement, négatif et positif. Ces interactions ont apparenunent lieu au niveau de GacS et permettent une modulation de l'expression des antibiotiques et de l'acide cyanhydrique, ainsi que du gène rpoS codant pour le facteur sigma du stress. La température s'est révélée être un facteur environnemental important qui influence la cascade Gac/Rsm. Il s'avère en effet que la production d'antibiotiques ainsi que d'acide cyanhydrique est moins importante à 35°C qu'à 30°C. L'implication du senseur Rets dans ce contrôle par la température a pu être démontrée. La régulation positive du petit ARN RsmY par GacA et RsmA/RsmE a pu être confirmée; par le biais d'une analyse mutationelle, deux régions essentielles ont pu être mises en évidence dans la région promotrice de rsmY. Malgré le manque de preuves expérimentales directes, certains indices suggèrent que GacA puisse directement se fixer sur une des deux régions (appelée UAS), tandis que la deuxième région (appelée linker) serait plutôt reconnue par des facteurs intermédiaires (activateurs ou répresseurs) dépendant de RsmA/RsmE. En conclusion, ce travail a dévoilé de nouveaux éléments permettant d'éclairer les mécanismes de transduction des signaux dans la cascade Gac/Rsm.
Resumo:
Typical presentation, diagnosis and treatment
Resumo:
The article is composed of two sections. The first one is a critical review of the three main alternative indices to GDP which were proposed in the last decades – the Human Development Index (HDI), the Genuine Progress Indicator (GPI), and the Happy Planet Index (HPI) – which is made on the basis of conceptual foundations, rather than looking at issues of statistical consistency or mathematical refinement as most of the literature does. The pars construens aims to propose an alternative measure, the composite wealth index, consistent with an approach to development based on the notion of composite wealth, which is in turn derived from an empirical common sense criterion. Arguably, this approach is suitable to be conveyed into an easily understandable and coherent indicator, and thus appropriate to track development in its various dimensions: simple in its formulation, the wealth approach can incorporate social and ecological goals without significant alterations in conceptual foundations, while reducing to a minimum arbitrary weighting.
Resumo:
Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.
Resumo:
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4-11 mice. At mGluR5 KO TC synapses, N-methyl-D-aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.
Resumo:
The oxalate-carbonate pathway (OCP) is a biogeochemical process, which has been described in Milicia excelsa tree ecosystems of Africa. This pathway involves biological and geological parameters at different scales: oxalate, as a by-product of photosynthesis, is oxidized by oxalotrophic bacteria leading to a local pH increase, and eventually to carbonate accumulation through time in previously acidic and carbonate-free tropical soils. Former studies have shown that this pedogenic process can potentially lead to the formation of an atmospheric carbon sink. Considering that 80% of plant species are known to produce oxalate, it is reasonable to assume that M. excelsa is not the only tree that can support OCP ecosystems. The search for similar conditions on another continent led us to South America, in an Amazon forest ecosystem (Alto Beni, Bolivia). This area was chosen because of the absence of local inherited carbonate in the bedrock, as well as its expected acidic soil conditions. Eleven tree species and associated soils were tested positive for the presence of carbonate with a more alkaline soil pH close to the tree than at a distance from it. A detailed study of Pentaplaris davidsmithii and Ceiba speciosa trees showed that oxalotrophy impacted soil pH in a similar way to at African sites (at least with 1 pH unit increasing). African and South American sites display similar characteristics regarding the mineralogical assemblage associated with the OCP, except for the absence of weddellite. The amount of carbonate accumulated is 3 to 4 times lower than the values measured in African sites related to M. excelsa ecosystems. Still, these secondary carbonates remain critical for the continental carbon cycle, as they are unexpected in the acidic context of Amazonian soils. Therefore, the present study demonstrates the existence of an active OCP in South America. The three critical components of an operating OCP are the presence of: i) local alkalinization, ii) carbonate accumulations, and iii) oxalotrophic bacteria, which were identified associated to the oxalogenic tree C. speciosa. If the question of a potential carbon sink related to oxalotrophic-oxalogenic ecosystems in the Amazon Basin is still pending, this study highlights the implication of OCP ecosystems on carbon and calcium biogeochemical coupled cycles. As previously mentioned for M. excelsa tree ecosystems in Africa, carbonate accumulations observed in the Bolivian tropical forest could be extrapolated to part or the whole Amazon Basin and might constitute an important reservoir that must be taken into account in the global carbon balance of the Tropics.
Resumo:
Chronic administration of recombinant human erythropoietin (rHuEPO) can generate serious cardiovascular side effects such as arterial hypertension (HTA) in clinical and sport fields. It is hypothesized that nitric oxide (NO) can protect from noxious cardiovascular effects induced by chronic administration of rHuEPO. On this base, we studied the cardiovascular effects of chronic administration of rHuEPO in exercise-trained rats treated with an inhibitor of NO synthesis (L-NAME). Rats were treated or not with rHuEPO and/or L-NAME during 6 weeks. During the same period, rats were subjected to treadmill exercise. The blood pressure was measured weekly. Endothelial function of isolated aorta and small mesenteric arteries were studied and the morphology of the latter was investigated. L-NAME induced hypertension (197 ± 6 mmHg, at the end of the protocol). Exercise prevented the rise in blood pressure induced by L-NAME (170 ± 5 mmHg). However, exercise-trained rats treated with both rHuEPO and L-NAME developed severe hypertension (228 ± 9 mmHg). Furthermore, in these exercise-trained rats treated with rHuEPO/L-NAME, the acetylcholine-induced relaxation was markedly impaired in isolated aorta (60% of maximal relaxation) and small mesenteric arteries (53%). L-NAME hypertension induced an internal remodeling of small mesenteric arteries that was not modified by exercise, rHuEPO or both. Vascular ET-1 production was not increased in rHuEPO/L-NAME/training hypertensive rats. Furthermore, we observed that rHuEPO/L-NAME/training hypertensive rats died during the exercise or the recovery period (mortality 51%). Our findings suggest that the use of rHuEPO in sport, in order to improve physical performance, represents a high and fatal risk factor, especially with pre-existing cardiovascular risk.
Resumo:
Macrophages play a central role in the pathogenesis of atherosclerosis by accumulating cholesterol through increased uptake of oxidized low-density lipoproteins by scavenger receptor CD36, leading to foam cell formation. Here we demonstrate the ability of hexarelin, a GH-releasing peptide, to enhance the expression of ATP-binding cassette A1 and G1 transporters and cholesterol efflux in macrophages. These effects were associated with a transcriptional activation of nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma in response to binding of hexarelin to CD36 and GH secretagogue-receptor 1a, the receptor for ghrelin. The hormone binding domain was not required to mediate PPARgamma activation by hexarelin, and phosphorylation of PPARgamma was increased in THP-1 macrophages treated with hexarelin, suggesting that the response to hexarelin may involve PPARgamma activation function-1 activity. However, the activation of PPARgamma by hexarelin did not lead to an increase in CD36 expression, as opposed to liver X receptor (LXR)alpha, suggesting a differential regulation of PPARgamma-targeted genes in response to hexarelin. Chromatin immunoprecipitation assays showed that, in contrast to a PPARgamma agonist, the occupancy of the CD36 promoter by PPARgamma was not increased in THP-1 macrophages treated with hexarelin, whereas the LXRalpha promoter was strongly occupied by PPARgamma in the same conditions. Treatment of apolipoprotein E-null mice maintained on a lipid-rich diet with hexarelin resulted in a significant reduction in atherosclerotic lesions, concomitant with an enhanced expression of PPARgamma and LXRalpha target genes in peritoneal macrophages. The response was strongly impaired in PPARgamma(+/-) macrophages, indicating that PPARgamma was required to mediate the effect of hexarelin. These findings provide a novel mechanism by which the beneficial regulation of PPARgamma and cholesterol metabolism in macrophages could be regulated by CD36 and ghrelin receptor downstream effects.
Resumo:
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.
Resumo:
The Academy's review, 'A new pathway for the regulation and governance of health research' was published in January 2011. The report was prepared by a working group, chaired by Professor Sir Michael Rawlins FMedSci, convened in response to an invitation from Government to review the regulation and governance of UK health research involving human participants, their tissue or their data.The report proposes four key principles that should underpin the regulation and governance framework around health research in the UK, and makes recommendations to:Create a new Health Research Agency (HRA) to rationalise the regulation and governance of all health research. Include within the HRA a new National Research Governance Service to facilitate timely approval of research studies by NHS Trusts. Improve the UK environment for clinical trials.Provide access to patient data that protects individual interests and allows approved research to proceed effectively. Embed a culture that values research within the NHS.
Resumo:
Care pathway and model for community forensic teams in Northern Ireland, October, 2011.
Resumo:
In humans, touching the skin is known to activate, among others, the contralateral primary somatosensory cortex on the postcentral gyrus together with the bilateral parietal operculum (i.e. the anatomical site of the secondary somatosensory cortex). But which brain regions beyond the postcentral gyrus specifically contribute to the perception of touch remains speculative. In this study we collected structural magnetic resonance imaging scans and neurological examination reports of patients with brain injuries or stroke in the left or right hemisphere, but not in the postcentral gyrus as the entry site of cortical somatosensory processing. Using voxel-based lesion-symptom mapping, we compared patients with impaired touch perception (i.e. hypoaesthesia) to patients without such touch impairments. Patients with hypoaesthesia as compared to control patients differed in one single brain cluster comprising the contralateral parietal operculum together with the anterior and posterior insular cortex, the putamen, as well as subcortical white matter connections reaching ventrally towards prefrontal structures. This finding confirms previous speculations on the 'ventral pathway of somatosensory perception' and causally links these brain structures to the perception of touch.
Resumo:
�This regional care pathway provides�guidance for all Health and Social Care (HSC) professionals who come into contact with pregnant women. In addition, each Trust has developed a local adaptation of this pathway for their population.�
Resumo:
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.