150 resultados para Globus Pallidus
Resumo:
Vols. 54-57 include section "Kartographischer Monatsbericht von Hermann Haack" (title varies) v. 1-4, 1906-11.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Sub-title varies.
Resumo:
Mode of access: Internet.
Resumo:
The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.
Resumo:
* The work is partially supported by the grant of National Academy of Science of Ukraine for the support of scientific researches by young scientists No 24-7/05, " Розробка Desktop Grid-системи і оптимізація її продуктивності ”.
Resumo:
Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in many tissues of the body, including the nervous system acting as a neurotransmitter. Within the neuro-axis, the location of the majority of the 5-HT neurons is superimposed with raphe nuclei of the brain stem, in the median line or its vicinity, so that neuronal 5-HT can be considered a marker of the raphe nuclei. Serotonergic neurons are projected to almost all areas of the brain. Studies show the participation of serotonin in regulating the temperature, feeding behavior, sexual behavior, biological rhythms, sleep, locomotor function, learning, among others. The anatomy of these groups has been revised in many species, including mouse, rabbit, cat and primates, but never before in a bat species from South America. This study aimed to characterize the serotonergic clusters in the brain of the bat Artibeus planirostris through immunohistochemistry for serotonin. Seven adult bat males of Artibeus planirostris species (Microchiroptera, Mammalia) were used in this study. The animals were anesthetized, transcardially perfused and their brains were removed. Coronal sections of the frozen brain of bats were obtained in sliding microtome and subjected to immunohistochemistry for 5-HT. Delimit the caudal linear (CLi), dorsal (DR), median (MnR), paramedian (PMnR), pontine (PNR), magnus (MgR), pallidus (RPA) and obscurus (ROb) raphe nucleus, in addition to the groups B9 and rostral and caudal ventrolateral (RVL/CVL). The serotonergic groups of this kind of cheiroptera present morphology and cytoarchitecture relatively similar to that described in rodents and primates, confirming the phylogenetic stability of these cell clusters.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Synthetic torpor is a peculiar physiological condition resembling natural torpor, in which even non-hibernating species can be induced through different pharmacological approaches. The growing interest in the induction of a safe synthetic torpor state in non-hibernating species stems from the possible applications that it may have in a translational perspective. In particular, the deeper understanding of the functional changes occurring during and after synthetic torpor may lead to the standardization of a safe procedure to be used also in humans and to the implementation of new therapeutic strategies. Some of the most interesting and peculiar characteristics of torpor that should be assessed in synthetic torpor and may have a translational relevance are: the reversible hyperphosphorylation of neuronal Tau protein, the strong and extended neural plasticity, which may be related to Tau regulatory processes, and the development of radioresistance. In this respect, in the present thesis, rats were induced into synthetic torpor by the pharmacological inhibition of the raphe pallidus, a key brainstem thermoregulatory area, in order to assess: i) whether a reversible hyperphosphorylation of Tau protein occurs at the spinal cord level, also testing the possible involvement of microglia activation in this phenomenon; ii) sleep quality after synthetic torpor and its possible involvement in the process of Tau dephosphorylation; iii) whether synthetic torpor has radioprotective properties, by assessing histopathological and molecular features in animals exposed to X-rays irradiation. The results showed that: i) a reversible hyper-phosphorylation of Tau protein also occurs in synthetic torpor in the dorsal horns of the spinal cord; ii) sleep regulation after synthetic torpor seems to be physiological, and sleep deprivation speeds up Tau dephosphorylation; iii) synthetic torpor induces a consistent increase in radioresistance, as shown by analyses at both histological and molecular level.
Resumo:
Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.
Resumo:
Torpor is a successful survival strategy displayed by several mammalian species to cope with harsh environmental conditions. A complex interplay of ambient, genetic and circadian stimuli acts centrally to induce a severe suppression of metabolic rate, usually followed by an apparently undefended reduction of body temperature. Some animals, such as marmots, are able to maintain this physiological state for months (hibernation), during which torpor bouts are periodically interrupted by short interbouts of normothermia (arousals). Interestingly, torpor adaptations have been shown to be associated with a large resistance towards stressors, such as radiation: indeed, if irradiated during torpor, hibernators can tolerate higher doses of radiation, showing an increased survival rate. New insights for radiotherapy and long-term space exploration could arise from the induction of torpor in non-hibernators, like humans. The present research project is centered on synthetic torpor (ST), a hypometabolic/hypothermic condition induced in a non-hibernator, the rat, through the pharmacological inhibition of the Raphe Pallidus, a key brainstem area controlling thermogenic effectors. By exploiting this procedure, this thesis aimed at: i) providing a multiorgan description of the functional cellular adaptations to ST; ii) exploring the possibility, and the underpinning molecular mechanisms, of enhanced radioresistance induced by ST. To achieve these aims, transcriptional and histological analysis have been performed in multiple organs of synthetic torpid rats and normothermic rats, either exposed or not exposed to 3 Gy total body of X-rays. The results showed that: i) similarly to natural torpor, ST induction leads to the activation of survival and stress resistance responses, which allow the organs to successfully adapt to the new homeostasis; ii) ST provides tissue protection against radiation damage, probably mainly through the cellular adaptations constitutively induced by ST, even though the triggering of specific responses when the animal is irradiated during hypothermia might play a role.