993 resultados para Glial cells
Resumo:
Glial cells are active partners of neurons in processing information and synaptic integration. They receive coded signals from synapses and elaborate modulatory responses. The active properties of glia, including long-range signalling and regulated transmitter release, are beginning to be elucidated. Recent insights suggest that the active brain should no longer be regarded as a circuitry of neuronal contacts, but as an integrated network of interactive neurons and glia.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by biochemical and immunocytochemical methods for their development-dependent expression of several cytoskeletal proteins, including the heavy- and medium-sized neurofilament subunits (H-NF and M-NF, respectively); brain spectrin; synapsin I; beta-tubulin; and the microtubule-associated proteins (MAPs) 1, 2, and 5 and tau protein. It was found that with time in culture the levels of most of these cytoskeletal proteins increased greatly, with the exceptions of the particular beta-tubulin form studied, which remained unchanged, and MAP 5, which greatly decreased. Among the neurofilament proteins, expression of M-NF preceded that of H-NF, with the latter being detectable only after approximately 3 weeks in culture. Furthermore, MAP 2 and tau protein showed a development-dependent change in expression from the juvenile toward the adult form. The comparison of these developmental changes in cytoskeletal protein levels with those observed in rat brain tissue revealed that protein expression in aggregate cultures is nearly identical to that in vivo during maturation of the neuronal cytoskeleton. Aggregate cultures deprived of glial cells, i.e., neuron-enriched cultures prepared by treating early cultures with the antimitotic drug cytosine arabinoside, exhibited pronounced deficits in M-NF, H-NF, MAP 2, MAP 1, synapsin I, and brain spectrin, with increased levels of a 145-kDa brain spectrin breakdown product. These adverse effects of glial cell deprivation could be reversed by the maintenance of neuron-enriched cultures at elevated concentrations of KCl (30 mM). This chronic treatment had to be started at an early developmental stage to be effective, a finding suggesting that sustained depolarization by KCl is able to enhance the developmental expression and maturation of the neuronal cytoskeleton.
Resumo:
An unusually high incidence of microcephaly in newborns has recently been observed in Brazil. There is a temporal association between the increase in cases of microcephaly and the Zika virus (ZIKV) epidemic. Viral RNA has been detected in amniotic fluid samples, placental tissues and newborn and fetal brain tissues. However, much remains to be determined concerning the association between ZIKV infection and fetal malformations. In this study, we provide evidence of the transplacental transmission of ZIKV through the detection of viral proteins and viral RNA in placental tissue samples from expectant mothers infected at different stages of gestation. We observed chronic placentitis (TORCH type) with viral protein detection by immunohistochemistry in Hofbauer cells and some histiocytes in the intervillous spaces. We also demonstrated the neurotropism of the virus via the detection of viral proteins in glial cells and in some endothelial cells and the observation of scattered foci of microcalcifications in the brain tissues. Lesions were mainly located in the white matter. ZIKV RNA was also detected in these tissues by real-time-polymerase chain reaction. We believe that these findings will contribute to the body of knowledge of the mechanisms of ZIKV transmission, interactions between the virus and host cells and viral tropism.
Resumo:
In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules.
Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion.
Resumo:
In the mouse, the Grueneberg ganglion (GG) is an olfactory subsystem implicated both in chemo- and thermo-sensing. It is specifically involved in the recognition of volatile danger cues such as alarm pheromones and structurally-related predator scents. No evidence for these GG sensory functions has been reported yet in other rodent species. In this study, we used a combination of histological and physiological techniques to verify the presence of a GG and investigate its function in the rat, hamster, and gerbil comparing with the mouse. By scanning electron microscopy (SEM) and transmitted electron microscopy (TEM), we found isolated or groups of large GG cells of different shapes that in spite of their gross anatomical similarities, display important structural differences between species. We performed a comparative and morphological study focusing on the conserved olfactory features of these cells. We found fine ciliary processes, mostly wrapped in ensheating glial cells, in variable number of clusters deeply invaginated in the neuronal soma. Interestingly, the glial wrapping, the amount of microtubules and their distribution in the ciliary processes were different between rodents. Using immunohistochemistry, we were able to detect the expression of known GG proteins, such as the membrane guanylyl cyclase G and the cyclic nucleotide-gated channel A3. Both the expression and the subcellular localization of these signaling proteins were found to be species-dependent. Calcium imaging experiments on acute tissue slice preparations from rodent GG demonstrated that the chemo- and thermo-evoked neuronal responses were different between species. Thus, GG neurons from mice and rats displayed both chemo- and thermo-sensing, while hamsters and gerbils showed profound differences in their sensitivities. We suggest that the integrative comparison between the structural morphologies, the sensory properties, and the ethological contexts supports species-dependent GG features prompted by the environmental pressure.
Resumo:
Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated by agents such as interferon-g (IFN-g) and lipopolysaccharide (LPS). Aggregating brain cultures exposed to a repeated treatment (3 fold) with IFN-g (50 U/ml) and LPS (5 ug/ml) were used as an in vitro model of demyelination. Demyelination could be due to either the direct effect of IFN-g and LPS on oligodendrocytes or the IFN-g and LPS-induced inflammatory response. We investigated the involvement of microglial reactivity in demylination and remyelination by using minocycline, an antibiotic known to block microglial reactivity. Changes in myelination were examined by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) at the mRNA level by quantitative RT-PCR and at the protein level by Western blotting and immunohistochemistry. To evaluate brain inflammatory reactions, microglia were stained with isolectin B4 (IB4), quantitative RT-PCR was used to determine the expression of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and inducible NO synthase (iNOS). The repeated treatment with IFN-g and LPS caused demyelination, as indicated by a decrease in MBP and MOG expression. It also activated microglial cells, and up-regulated TNF-a, IL-6, and iNOS expression. Although minocycline did not affect the IFN-g- and LPS-induced upregulation of TNF-a, IL-6, it decreased the number of IB4-labeled microglial cells. Furthermore, minocycline did not prevent demyelination, whereas it strongly increased MBP expression one week after the end of the demyelinating treatment. In conclusion, the present results show that minocycline promoted remyelination after IFN-g- and LPS-induced demyelination, presumably due to its effects on microglial cells.
Resumo:
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.
Resumo:
In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.
Resumo:
PURPOSE: The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. MATERIAL AND METHODS: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. RESULTS: In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. CONCLUSIONS: In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula.
Resumo:
Neuropathic pain is a common form of chronic pain, and is unsuccessfully alleviated by usual medications. Mounting evidence strongly point at non-neuronal glial cells in the spinal cord as key actors behind the persistence of pain. In particular, a change in the astrocytic capacity to regulate extracellular concentrations of neurotransmitters might account for the strengthened spinal nociceptive neurotransmission. Therefore, we investigated whether spinal expressions of GABA (GAT) and glutamate (EAAT) transporters were affected in the spared nerve injury (SNI) rat model of neuropathic pain. SNI was induced in male Sprague-Dawley rats by a unilateral section of tibial and common peroneal branches of the sciatic nerve, leaving the sural branch untouched. Western-blot analysis was performed to study the expression of GAT-1 and GAT-3 as well as EAAT-1 and EAAT-2, the main astrocytic GABA and glutamate transporters respectively. Seven days post-surgery, a significant increase in GAT-1, GAT-3 and EAAT-1 expressions is detected in both ipsilateral and contralateral sides of lumbar spinal cord in comparison to sham animals. No change in EAAT-2 signal could be detected. Furthermore, the astrocytic reaction parallels the glutamate and GABA transporters changes as we found an increased GFAP expression compared to the sham condition, in both spinal sides. Together, our results indicate that modifications in GABA and glutamate transport may occur along with SNI-associated painful neuropathy and identify spinal neurotransmitter reuptake machinery as a putative pharmacological target in neuropathic pain.
Resumo:
It is well known that exposure to low doses of lead causes long-lasting neurobehavioural deficits, but the cellular changes underlying these behavioural changes remain to be elucidated. A protective role of glial cells on neurons through lead sequestration by astrocytes has been proposed. The possible modulation of lead neurotoxicity by neuron-glia interactions was examined in three-dimensional cultures of foetal rat telencephalon. Mixed-brain cell cultures or cultures enriched in either neurons or glial cells were treated for 10 days with lead acetate (10(-6) m), a concentration below the limit of cytotoxicity. Intracellular lead content and cell type-specific enzyme activities were determined. It was found that in enriched cultures neurons stored more lead than glial cells, and each cell type alone stored more lead than in co-culture. Moreover, glial cells but not neurons were more affected by lead in enriched culture than in co-culture. These results show that neuron-glia interactions attenuate the cellular lead uptake and the glial susceptibility to lead, but they do not support the idea of a protective role of astrocytes.
Resumo:
PURPOSE: Local delivery of therapeutic molecules encapsulated within liposomes is a promising method to treat ocular inflammation. The purpose of the present study was to define the biodistribution of rhodamine-conjugated liposomes loaded with vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, following their intravitreal (IVT) injection in normal rats. METHODS: Healthy seven- to eight-week-old Lewis male rats were injected into the vitreous with empty rhodamine-conjugated liposomes (Rh-Lip) or with VIP-loaded Rh-Lip (VIP-Rh-Lip; 50 mM of lipids with an encapsulation efficiency of 3.0+/-0.4 mmol VIP/mol lipids). Twenty-four h after IVT injection, the eyes, the cervical, mesenteric, and inguinal lymph nodes (LN), and spleen were collected. The phenotype and distribution of cells internalizing Rh-Lip and VIP-Rh-Lip were studied. Determination of VIP expression in ocular tissues and lymphoid organs and interactions with T cells in cervical LN was performed on whole mounted tissues and frozen tissue sections by immunofluorescence and confocal microscopy. RESULTS: In the eye, 24 h following IVT injection, fluorescent liposomes (Rh-Lip and VIP-Rh-Lip) were detected mainly in the posterior segment of the eye (vitreous, inner layer of the retina) and to a lesser extent at the level of the iris root and ciliary body. Liposomes were internalized by activated retinal Müller glial cells, ocular tissue resident macrophages, and rare infiltrating activated macrophages. In addition, fluorescent liposomes were found in the episclera and conjunctiva where free VIP expression was also detected. In lymphoid organs, Rh-Lip and VIP-Rh-Lip were distributed almost exclusively in the cervical lymph nodes (LN) with only a few Rh-Lip-positive cells detected in the spleen and mesenteric LN and none in the inguinal LN. In the cervical LN, Rh-Lip were internalized by resident ED3-positive macrophages adjacent to CD4 and CD8-positive T lymphocytes. Some of these T lymphocytes in close contact with macrophages containing VIP-Rh-Lip expressed VIP. CONCLUSIONS: Liposomes are specifically internalized by retinal Müller glial cells and resident macrophages in the eye. A limited passage of fluorescent liposomes from the vitreous to the spleen via the conventional outflow pathway and the venous circulation was detected. The majority of fluorescent liposomes deposited in the conjunctiva following IVT injection reached the subcapsular sinus of the cervical LN via conjuntival lymphatics. In the cervical LN, Rh-Lip were internalized by resident subcapsular sinus macrophages adjacent to T lymphocytes. Detection of VIP in both macrophages and T cells in cervical LN suggests that IVT injection of VIP-Rh-Lip may increase ocular immune privilege by modulating the loco-regional immune environment. In conclusion, our observations suggest that IVT injection of VIP-loaded liposomes is a promising therapeutic strategy to dampen ocular inflammation by modulating macrophage and T cell activation mainly in the loco-regional immune system.
Resumo:
The intravenous, short-acting general anesthetic propofol was applied to three-dimensional (aggregating) cell cultures of fetal rat telencephalon. Both the clinically used formulation (Disoprivan, ICI Pharmaceuticals, Cheshire, England) and the pure form (2,6-diisopropylphenol) were tested at two different periods of brain development: immature brain cell cultures prior to synaptogenesis and at the time of intense synapses and myelin formation. At both time periods and for clinically relevant concentrations and time of exposure (i.e., concentrations > or = 2.0 micrograms/ml for 8 hr), propofol caused a significant decrease of glutamic acid decarboxylase activity. This effect persisted after removal of the drug, suggesting irreversible structural changes in GABAergic neurons. The gamma-aminobutyric acid type A (GABAA) blocking agents bicuculline and picrotoxin partially attenuated the neurotoxic effect of propofol in cultures treated at the more mature phase of development. This protective effect was not observed in the immature brain cells. The present data suggest that propofol may cause irreversible lesions to GABAergic neurons when given at a critical phase of brain development. In contrast, glial cells and myelin appeared resistant even to high doses of propofol.
Resumo:
More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.
Resumo:
The morphological and functional diversity of astrocytes, and their essential contribution in physiological and pathological conditions, are starting to emerge. However, experimental systems to investigate neuron-glia interactions and develop innovative approaches for the treatment of central nervous system (CNS) disorders are still very limited. Fluorescent reporter genes have been used to visualize populations of astrocytes and produce an atlas of gene expression in the brain. Knock-down or knock-out of astrocytic proteins using transgenesis have also been developed, but these techniques remain complex and time-consuming. Viral vectors have been developed to overexpress or silence genes of interest as they can be used for both in vitro and in vivo studies in adult mammalian species. In most cases, high transduction efficiency and long-term transgene expression are observed in neurons but there is limited expression in astrocytes. Several strategies have been developed to shift the tropism of lentiviral vectors (LV) and allow local and controlled gene expression in glial cells. In this review, we describe how modifications of the interaction between the LV envelope glycoprotein and the surface receptor molecules on target cells, or the integration of cell-specific promoters and miRNA post-transcriptional regulatory elements have been used to selectively express transgenes in astrocytes.