998 resultados para Geophysics.
Resumo:
The landslide of Rosiana is considered the largest slope movement amongst those known in historical times in Gran Canana, Canary Islands. It has been activated at least 4 times in the last century, and in the movement of 1956, when about 3.106 m3 of materials were involved, 250 people had to be evacuated and many buildings were destroyed. The present geological hazard has lead to specific studies of the phenomenon which, once characterised, can be used as a guide for the scientific and technical works that are to be made in this or similar areas. This paper wants to increase the knowledge about the unstable mass of Rosiana by using geophysical techniques based on the method of seismic by refraction. The geophysical measues have been interpreted with the aid of the available geomorphologic data, thus obtaining a first approximation to the geometry of the slope movements
Resumo:
Earthquakes represent a major hazard for populations around the world, causing frequent loss of life,human suffering and enormous damage to homes, other buildings and infrastructure. The Technology Resources forEarthquake Monitoring and Response (TREMOR) Team of 36 space professionals analysed this problem over thecourse of the International Space University Summer Session Program and published their recommendations in the formof a report. The TREMOR Team proposes a series of space- and ground-based systems to provide improved capabilityto manage earthquakes. The first proposed system is a prototype earthquake early-warning system that improves theexisting knowledge of earthquake precursors and addresses the potential of these phenomena. Thus, the system willat first enable the definitive assessment of whether reliable earthquake early warning is possible through precursormonitoring. Should the answer be affirmative, the system itself would then form the basis of an operational earlywarningsystem. To achieve these goals, the authors propose a multi-variable approach in which the system will combine,integrate and process precursor data from space- and ground-based seismic monitoring systems (already existing andnew proposed systems) and data from a variety of related sources (e.g. historical databases, space weather data, faultmaps). The second proposed system, the prototype earthquake simulation and response system, coordinates the maincomponents of the response phase to reduce the time delays of response operations, increase the level of precisionin the data collected, facilitate communication amongst teams, enhance rescue and aid capabilities and so forth. It isbased in part on an earthquake simulator that will provide pre-event (if early warning is proven feasible) and post-eventdamage assessment and detailed data of the affected areas to corresponding disaster management actors by means of ageographic information system (GIS) interface. This is coupled with proposed mobile satellite communication hubs toprovide links between response teams. Business- and policy-based implementation strategies for these proposals, suchas the establishment of a non-governmental organisation to develop and operate the systems, are included.
Resumo:
P130 A HIGH-RESOLUTION 2D/3D SEISMIC STUDY OF A THRUST FAULT ZONE IN LAKE GENEVA SWITZERLAND M. SCHEIDHAUER M. BERES D. DUPUY and F. MARILLIER Institute of Geophysics University of Lausanne 1015 Lausanne, Switzerland Summary A high-resolution three-dimensional (3D) seismic reflection survey has been conducted in Lake Geneva near the city of Lausanne Switzerland where the faulted molasse basement (Tertiary sandstones) is overlain by complex Quaternary sedimentary structures. Using a single 48-channel streamer an area of 1200 m x 600 m was surveyed in 10 days. With a 5-m shot spacing and a receiver spacing of 2.5 m in the inline direction and 7.5 m in the crossline direction, a 12-fold data coverage was achieved. A maximum penetration depth of ~150 m was achieved with a 15 cu. in. water gun operated at 140 bars. The multi-channel data allow the determination of an accurate velocity field for 3D processing, and they show particularly clean images of the fault zone and the overlying sediments in horizontal and vertical sections. In order to compare different sources, inline 55 was repeated with a 30/30 and a 15/15 cu. in. double-chamber air gun (Mini GI) operated at 100 and 80 bars, respectively. A maximum penetration depth of ~450 m was achieved with this source.
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
Few subjects have caught the attention of the entire world as much as those dealing with natural hazards. The first decade of this new millennium provides a litany of tragic examples of various hazards that turned into disasters affecting millions of individuals around the globe. The human losses (some 225,000 people) associated with the 2004 Indian Ocean earthquake and tsunami, the economic costs (approximately 200 billion USD) of the 2011 Tohoku Japan earthquake, tsunami and reactor event, and the collective social impacts of human tragedies experienced during Hurricane Katrina in 2005 all provide repetitive reminders that we humans are temporary guests occupying a very active and angry planet. Any examples may have been cited here to stress the point that natural events on Earth may, and often do, lead to disasters and catastrophes when humans place themselves into situations of high risk. Few subjects share the true interdisciplinary dependency that characterizes the field of natural hazards. From geology and geophysics to engineering and emergency response to social psychology and economics, the study of natural hazards draws input from an impressive suite of unique and previously independent specializations. Natural hazards provide a common platform to reduce disciplinary boundaries and facilitate a beneficial synergy in the provision of timely and useful information and action on this critical subject matter. As social norms change regarding the concept of acceptable risk and human migration leads to an explosion in the number of megacities, coastal over-crowding and unmanaged habitation in precarious environments such as mountainous slopes, the vulnerability of people and their susceptibility to natural hazards increases dramatically. Coupled with the concerns of changing climates, escalating recovery costs, a growing divergence between more developed and less developed countries, the subject of natural hazards remains on the forefront of issues that affect all people, nations, and environments all the time.This treatise provides a compendium of critical, timely and very detailed information and essential facts regarding the basic attributes of natural hazards and concomitant disasters. The Encyclopedia of Natural Hazards effectively captures and integrates contributions from an international portfolio of almost 300 specialists whose range of expertise addresses over 330 topics pertinent to the field of natural hazards. Disciplinary barriers are overcome in this comprehensive treatment of the subject matter. Clear illustrations and numerous color images enhance the primary aim to communicate and educate. The inclusion of a series of unique ?classic case study? events interspersed throughout the volume provides tangible examples linking concepts, issues, outcomes and solutions. These case studies illustrate different but notable recent, historic and prehistoric events that have shaped the world as we now know it. They provide excellent focal points linking the remaining terms in the volume to the primary field of study. This Encyclopedia of Natural Hazards will remain a standard reference of choice for many years.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.
Resumo:
Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.
Resumo:
En este estudio presentamos los valores medios del coeficiente de atenuación de las ondas Rayleigh para Europa occidental, obtenidos a partir del estudio de tres terremotos situados en las Azores, Sicilia y Mar Negro y registrados por estaciones europeas. Los resultados presentan una gran dispersión, mostrando claramente la inhomogeneidad de la zona. Para el terremoto del Atlántico, los resultados son muy coherentes y presentan unos valores del coeficiente de atenuación comparables, aunque ligeramente superiores para periodos cortos, a los haliados para la region estable de la placa Euroasiática.
Resumo:
La teoria de inversión en su forma estocastica ha sido aplicada a dos conjuntos de coeficientes de atenuación de las ondas de Rayleigh correspondientes a la zona estable Euroasiatica y a la zona Europea Occidental. Los resultados obtenidos muestran que las propiedades anelásticas bajo dichas zonas son distintas. Europa Occidental se halla caracterizada por valores mas bajos de los factores especificos de calidad de las ondas de cizalla(Qbeta) que los correspondientes a la zona Estable Euroasiática. Las profundiades a las que los valores de Qbeta decrecen más rápidamente son alrededorde 60 km para Europa Occidental y de 40 km para la zona Estable Euroasiática. La comparación con un estudio de atenuación en el Océano Atlántico muestra que los coeficientes de atenuación correspondientes a la zona Europea Occidental pueden ser considerados representativos para dicha zona.
Resumo:
The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in cylindrical coordinates. An important application of this method is the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the center, the borehole casing and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction, Fourier expansions in the other directions, and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method based on the method of characteristics is used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces. The viability and accuracy of the proposed method has been tested and verified in 2D polar coordinates through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. The proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is handled adequately.
A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics
Resumo:
We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.
Resumo:
The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantan that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a similar to 50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a similar to 20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantan and illustrate the potential of ERT surveying for paleoseismic studies.
Resumo:
Ground-penetrating radar (GPR) and microgravimetric surveys have been conducted in the southern Jura mountains of western Switzerland in order to map subsurface karstic features. The study site, La Grande Rolaz cave, is an extensive system in which many portions have been mapped. By using small station spacing and careful processing for the geophysical data, and by modeling these data with topographic information from within the cave, accurate interpretations have been achieved. The constraints on the interpreted geologic models are better when combining the geophysical methods than when using only one of the methods, despite the general limitations of two-dimensional (2D) profiling. For example, microgravimetry can complement GPR methods for accurately delineating a shallow cave section approximately 10 X 10 mt in size. Conversely, GPR methods can be complementary in determining cavity depths and in verifying the presence of off-line features and numerous areas of small cavities and fractures, which may be difficult to resolve in microgravimetric data.