909 resultados para Genetic-evidence


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous biochemical studies have suggested a role for bacterial DNA topoisomerase (TOPO) I in the suppression of R-loop formation during transcription. In this report, we present several pieces of genetic evidence to support a model in which R-loop formation is dynamically regulated during transcription by activities of multiple DNA TOPOs and RNase H. In addition, our results suggest that events leading to the serious growth problems in the absence of DNA TOPO I are linked to R-loop formation. We show that the overexpression of RNase H, an enzyme that degrades the RNA moiety of an R loop, can partially compensate for the absence of DNA TOPO I. We also note that a defect in DNA gyrase can correct several phenotypes associated with a mutation in the rnhA gene, which encodes the major RNase H activity. In addition, we found that a combination of topA and rnhA mutations is lethal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We sampled leaves from 678 individuals in 21 natural populations (30-36 individuals per population), covering the entire distribution of Euptelea pleiospermum in China.Total DNA was isolated from about 50 mg powdered leaf tissue following the protocol of a DNA extraction kit (Tiangen Biotech Co., LTD., Beijing, China). We used seven fluorescence-labeled microsatellite loci (EP036, EP059, EP081, EP087, EP091, EP278 and EP294; Zhang et al., 2008) to genotype our 678 DNA samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human social organization can deeply affect levels of genetic diversity. This fact implies that genetic information can be used to study social structures, which is the basis of ethnogenetics. Recently, methods have been developed to extract this information from genetic data gathered from subdivided populations that have gone through recent spatial expansions, which is typical of most human populations. Here, we perform a Bayesian analysis of mitochondrial and Y chromosome diversity in three matrilocal and three patrilocal groups from northern Thailand to infer the number of males and females arriving in these populations each generation and to estimate the age of their range expansion. We find that the number of male immigrants is 8 times smaller in patrilocal populations than in matrilocal populations, whereas women move 2.5 times more in patrilocal populations than in matrilocal populations. In addition to providing genetic quantification of sex-specific dispersal rates in human populations, we show that although men and women are exchanged at a similar rate between matrilocal populations, there are far fewer men than women moving into patrilocal populations. This finding is compatible with the hypothesis that men are strictly controlling male immigration and promoting female immigration in patrilocal populations and that immigration is much less regulated in matrilocal populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The enhanced biological phosphorus removal (EBPR) process is regularly used for the treatment of wastewater, but suffers from erratic performance. Successful EBPR relies on the growth of bacteria called polyphosphate-accumulating organisms (PAOs), which store phosphorus intracellularly as polyphosphate, thus removing it from wastewater. Metabolic models have been proposed which describe the measured chemical transformations, however genetic evidence is lacking to confirm these hypotheses. The aim of this research was to generate a metagenomic library from biomass enriched in PAOs as determined by phenotypic data and fluorescence in situ hybridisation (FISH) using probes specific for the only described PAO to date, Candidatus Accumulibacter phosphatis. DNA extraction methods were optimised and two fosmid libraries were constructed which contained 93 million base pairs of metagenomic data. Initial screening of the library for 16S rRNA genes revealed fosmids originating from a range of non-pure-cultured wastewater bacteria. The metagenomic libraries constructed will provide the ability to link phylogenetic and metabolic data for bacteria involved in nutrient removal from wastewater. Keywords DNA extraction; EBPR; metagenomic library; 16S rRNA gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine invertebrates representing at least five phyla are symbiotic with dinoflagellates from the genus Symbiodinium. This group of single-celled protists was once considered to be a single pandemic species, Symbiodinium microadriaticum. Molecular investigations over the past 25 years have revealed, however, that Symbiodinium is a diverse group of organisms with at least eight (A-H) divergent clades that in turn contain multiple molecular subclade types. The diversity within this genus may subsequently determine the response of corals to normal and stressful conditions, leading to the proposal that the symbiosis may impart unusually rapid adaptation to environmental change by the metazoan host. These questions have added importance due to the critical challenges that corals and the reefs they build face as a consequence of current rapid climate change. This review outlines our current understanding of the diverse genus Symbiodinium and explores the ability of this genus and its symbioses to adapt to rapid environmental change. (c) 2006 Rubel Foundation, ETH Zurich. Published by Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two of the greatest crises that civilisation faces in the 21st century are the predicted rapid increases in the ageing population and levels of metabolic disorders such as obesity and type 2 diabetes. A growing amount of evidence now supports the notion that energy balance is a key determinant not only in metabolism but also in the process of cellular ageing. Much of genetic evidence for a metabolic activity-driven ageing process has come from model organisms such as worms and flies where inactivation of the insulin receptor signalling cascade prolongs lifespan. At its most simplistic, this poses a conundrum for ageing in humans – can reduced insulin receptor signalling really promote lifespan and does this relate to insulin resistance seen in ageing? In higher animals, caloric restriction studies have confirmed a longer lifespan when daily calorie intake is reduced to 60% of normal energy requirement. This suggests that for humans, it is energy excess which is a likely driver of metabolic ageing. Interventions that interfere with the metabolic fate of nutrients offer a potentially important target for delaying biological ageing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The shells of the planktonic foraminifer Neogloboquadrina pachyderma have become a classical tool for reconstructing glacial-interglacial climate conditions in the North Atlantic Ocean. Palaeoceanographers utilize its left- and right-coiling variants, which exhibit a distinctive reciprocal temperature and water mass related shift in faunal abundance both at present and in late Quaternary sediments. Recently discovered cryptic genetic diversity in planktonic foraminifers now poses significant questions for these studies. Here we report genetic evidence demonstrating that the apparent 'single species' shell-based records of right-coiling N. pachyderma used in palaeoceanographic reconstructions contain an alternation in species as environmental factors change. This is reflected in a species-dependent incremental shift in right-coiling N. pachyderma shell calcite d18O between the Last Glacial Maximum and full Holocene conditions. Guided by the percentage dextral coiling ratio, our findings enhance the use of d18O records of right-coiling N. pachyderma for future study. They also highlight the need to genetically investigate other important morphospecies to refine their accuracy and reliability as palaeoceanographic proxies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantifying the function of mammalian enhancers at the genome or population scale has been longstanding challenge in the field of gene regulation. Studies of individual enhancers have provided anecdotal evidence on which many foundational assumptions in the field are based. Genome-scale studies have revealed that the number of sites bound by a given transcription factor far outnumber the genes that the factor regulates. In this dissertation we describe a new method, chromatin immune-enriched reporter assays (ChIP-reporters), and use that approach to comprehensively test the enhancer activity of genomic loci bound by the glucocorticoid receptor (GR). Integrative genomics analyses of our ChIP-reporter data revealed an unexpected mechanism of glucocorticoid (GC)-induced gene regulation. In that mechanism, only the minority of GR bound sites acts as GC-inducible enhancers. Many non-GC-inducible GR binding sites interact with GC-induced sites via chromatin looping. These interactions can increase the activity of GC-induced enhancers. Finally, we describe a method that enables the detection and characterization of the functional effects of non-coding genetic variation on enhancer activity at the population scale. Taken together, these studies yield both mechanistic and genetic evidence that provides context that informs the understanding of the effects of multiple enhancer variants on gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lactase is the enzyme that breaks down the milk sugar lactose, and in most mammals, including most humans, lactase activity is down-regulated after the weaning period is completed. However, in about 35% of adults worldwide, lactase continues to be expressed throughout adulthood, a feature termed lactase persistence (LP). Genetic evidence indicates that LP is a recent human adaptation, and its current geographic distribution correlates with the relative historical importance of dairying in different human populations. Investigating archaeological evidence for fresh milk consumption has proved crucial in building an account of the joint evolution of LP and dairying. A powerful technique for investigating food processing, including milk processing, in ancient populations is lipid residue analysis on archaeological pottery. We review here the archaeological and genetic evidence available that have contributed to a better understanding of the gene-culture co-evolution of LP and dairying.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rare cases of possible materno-fetal transmission of cancer have been recorded over the past 100 years but evidence for a shared cancer clone has been very limited. We provide genetic evidence for mother to offspring transmission, in utero, of a leukemic cell clone. Maternal and infant cancer clones shared the same unique BCR-ABL1 genomic fusion sequence, indicating a shared, single-cell origin. Microsatellite markers in the infant cancer were all of maternal origin. Additionally, the infant, maternally- derived cancer cells had a major deletion on one copy of chromosome 6p that included deletion of HLA alleles that were not inherited by the infant (i.e., foreign to the infant), suggesting a possible mechanism for immune evasion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 2 diabetes is one of the most common metabolic disorders in the world. Globally, the prevalence of this disorder is predicted to increase, along with the risk of developing diabetic related complications. One of those complications is diabetic nephropathy, defined by a progressive increase in proteinuria and a gradual decline in renal function. Approximately 25% to 30% of type 2 diabetic individuals develop this complication. However, its underlying genetic mechanisms remain unclear. Thus, the aim of this study is to contribute to the discovery of the genetic mechanisms involved in the development and progression of diabetic nephropathy, through the identification of relevant genetic variants in Portuguese type 2 diabetic individuals. The exomes of 36 Portuguese type 2 diabetic individuals were sequenced on the Ion ProtonTM Sequencer. From those individuals, 19 did not present diabetic nephropathy, being included in the control group, while the 17 individuals that presented the diabetic complication formed the case group. A statistical analysis was then performed to identify candidate common genetic variants, as well as genes accumulating rare variants that could be associated with diabetic nephropathy. From the search for common variants in the study population, the statistically significant (p-value ≤ 0.05) variants rs1051303 and rs1131620 in the LTBP4 gene, rs660339 in UCP2, rs2589156 in RPTOR, rs2304483 in the SLC12A3 gene and rs10169718 present in ARPC2, were considered as the most biologically relevant to the pathogenesis of diabetic nephropathy. The variants rs1051303 and rs1131620, as well as the variants rs660339 and rs2589156 were associated with protective effects in the development of the complication, while rs2304483 and rs10169718 were considered risk variants, being present in individuals with diagnosed diabetic nephropathy. In the rare variants approach, the genes with statistical significance (p-value ≤ 0.05) found, the STAB1 gene, accumulating 9 rare variants, and the CUX1 gene, accumulating 2 rare variants, were identified as the most relevant. Both genes were considered protective, with the accumulated rare variants mainly present in the group without the renal complication. The present study provides an initial analysis of the genetic evidence associated with the development and progression of diabetic nephropathy, and the results obtained may contribute to a deeper understanding of the genetic mechanisms associated with this diabetic complication.