918 resultados para Generalized least squares


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a new identification method based on the residual white noise autoregressive criterion (Pukkila et al. , 1990) to select the order of VARMA structures. Results from extensive simulation experiments based on different model structures with varying number of observations and number of component series are used to demonstrate the performance of this new procedure. We also use economic and business data to compare the model structures selected by this order selection method with those identified in other published studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In early generation variety trials, large numbers of new breeders' lines (varieties) may be compared, with each having little seed available. A so-called unreplicated trial has each new variety on just one plot at a site, but includes several replicated control varieties, making up around 10% and 20% of the trial. The aim of the trial is to choose some (usually around one third) good performing new varieties to go on for further testing, rather than precise estimation of their mean yields. Now that spatial analyses of data from field experiments are becoming more common, there is interest in an efficient layout of an experiment given a proposed spatial analysis and an efficiency criterion. Common optimal design criteria values depend on the usual C-matrix, which is very large, and hence it is time consuming to calculate its inverse. Since most varieties are unreplicated, the variety incidence matrix has a simple form, and some matrix manipulations can dramatically reduce the computation needed. However, there are many designs to compare, and numerical optimisation lacks insight into good design features. Some possible design criteria are discussed, and approximations to their values considered. These allow the features of efficient layouts under spatial dependence to be given and compared. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Caatinga biome, a semi-arid climate ecosystem found in northeast Brazil, presents low rainfall regime and strong seasonality. It has the most alarming climate change projections within the country, with air temperature rising and rainfall reduction with stronger trends than the global average predictions. Climate change can present detrimental results in this biome, reducing vegetation cover and changing its distribution, as well as altering all ecosystem functioning and finally influencing species diversity. In this context, the purpose of this study is to model the environmental conditions (rainfall and temperature) that influence the Caatinga biome productivity and to predict the consequences of environmental conditions in the vegetation dynamics under future climate change scenarios. Enhanced Vegetation Index (EVI) was used to estimate vegetation greenness (presence and density) in the area. Considering the strong spatial and temporal autocorrelation as well as the heterogeneity of the data, various GLS models were developed and compared to obtain the best model that would reflect rainfall and temperature influence on vegetation greenness. Applying new climate change scenarios in the model, environmental determinants modification, rainfall and temperature, negatively influenced vegetation greenness in the Caatinga biome. This model was used to create potential vegetation maps for current and future of Caatinga cover considering 20% decrease in precipitation and 1 °C increase in temperature until 2040, 35% decrease in precipitation and 2.5 °C increase in temperature in the period 2041-2070 and 50% decrease in precipitation and 4.5 °C increase in temperature in the period 2071-2100. The results suggest that the ecosystem functioning will be affected on the future scenario of climate change with a decrease of 5.9% of the vegetation greenness until 2040, 14.2% until 2070 and 24.3% by the end of the century. The Caatinga vegetation in lower altitude areas (most of the biome) will be more affected by climatic changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of reproductive strategies involves a complex calculus of costs and benefits to both parents and offspring. Many marine animals produce embryos packaged in tough egg capsules or gelatinous egg masses attached to benthic surfaces. While these egg structures can protect against environmental stresses, the packaging is energetically costly for parents to produce. In this series of studies, I examined a variety of ecological factors affecting the evolution of benthic development as a life history strategy. I used marine gastropods as my model system because they are incredibly diverse and abundant worldwide, and they exhibit a variety of reproductive and developmental strategies.

The first study examines predation on benthic egg masses. I investigated: 1) behavioral mechanisms of predation when embryos are targeted (rather than the whole egg mass); 2) the specific role of gelatinous matrix in predation. I hypothesized that gelatinous matrix does not facilitate predation. One study system was the sea slug Olea hansineensis, an obligate egg mass predator, feeding on the sea slug Haminoea vesicula. Olea fed intensely and efficiently on individual Haminoea embryos inside egg masses but showed no response to live embryos removed from gel, suggesting that gelatinous matrix enables predation. This may be due to mechanical support of the feeding predator by the matrix. However, Haminoea egg masses outnumber Olea by two orders of magnitude in the field, and each egg mass can contain many tens of thousands of embryos, so predation pressure on individuals is likely not strong. The second system involved the snail Nassarius vibex, a non-obligate egg mass predator, feeding on the polychaete worm Clymenella mucosa. Gel neither inhibits nor promotes embryo predation for Nassarius, but because it cannot target individual embryos inside an egg mass, its feeding is slow and inefficient, and feeding rates in the field are quite low. However, snails that compete with Nassarius for scavenged food have not been seen to eat egg masses in the field, leaving Nassarius free to exploit the resource. Overall, egg mass predation in these two systems likely benefits the predators much more than it negatively affects the prey. Thus, selection for environmentally protective aspects of egg mass production may be much stronger than selection for defense against predation.

In the second study, I examined desiccation resistance in intertidal egg masses made by Haminoea vesicula, which preferentially attaches its flat, ribbon-shaped egg masses to submerged substrata. Egg masses occasionally detach and become stranded on exposed sand at low tide. Unlike adults, the encased embryos cannot avoid desiccation by selectively moving about the habitat, and the egg mass shape has high surface-area-to-volume ratio that should make it prone to drying out. Thus, I hypothesized that the embryos would not survive stranding. I tested this by deploying individual egg masses of two age classes on exposed sand bars for the duration of low tide. After rehydration, embryos midway through development showed higher rates of survival than newly-laid embryos, though for both stages survival rates over 25% were frequently observed. Laboratory desiccation trials showed that >75% survival is possible in an egg mass that has lost 65% of its water weight, and some survival (<25%) was observed even after 83% water weight lost. Although many surviving embryos in both experiments showed damage, these data demonstrate that egg mass stranding is not necessarily fatal to embryos. They may be able to survive a far greater range of conditions than they normally encounter, compensating for their lack of ability to move. Also, desiccation tolerance of embryos may reduce pressure on parents to find optimal laying substrata.

The third study takes a big-picture approach to investigating the evolution of different developmental strategies in cone snails, the largest genus of marine invertebrates. Cone snail species hatch out of their capsules as either swimming larvae or non-dispersing forms, and their developmental mode has direct consequences for biogeographic patterns. Variability in life history strategies among taxa may be influenced by biological, environmental, or phylogenetic factors, or a combination of these. While most prior research has examined these factors singularly, my aim was to investigate the effects of a host of intrinsic, extrinsic, and historical factors on two fundamental aspects of life history: egg size and egg number. I used phylogenetic generalized least-squares regression models to examine relationships between these two egg traits and a variety of hypothesized intrinsic and extrinsic variables. Adult shell morphology and spatial variability in productivity and salinity across a species geographic range had the strongest effects on egg diameter and number of eggs per capsule. Phylogeny had no significant influence. Developmental mode in Conus appears to be influenced mostly by species-level adaptations and niche specificity rather than phylogenetic conservatism. Patterns of egg size and egg number appear to reflect energetic tradeoffs with body size and specific morphologies as well as adaptations to variable environments. Overall, this series of studies highlights the importance of organism-scale biotic and abiotic interactions in evolutionary patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms' ability to adapt to a changing environment. In long-term studies of natural populations, individuals are often marked at one point in their life and then repeatedly recaptured. It is therefore essential that a method for GWAS includes the process of repeated sampling. In a GWAS, the effects of thousands of single-nucleotide polymorphisms (SNPs) need to be fitted and any model development is constrained by the computational requirements. A method is therefore required that can fit a highly hierarchical model and at the same time is computationally fast enough to be useful. 2. Our method fits fixed SNP effects in a linear mixed model that can include both random polygenic effects and permanent environmental effects. In this way, the model can correct for population structure and model repeated measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a generalized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on observed genotypes from a long-term study of collared flycatchers in Sweden. 3. The method we present here was successful in estimating permanent environmental effects from simulated repeated measures data. Additionally, we found that especially for variable phenotypes having large variation between years, the repeated measurements model has a substantial increase in power compared to a model using average phenotypes as a response. 4. The method is available in the R package RepeatABEL. It increases the power in GWAS having repeated measures, especially for long-term studies of natural populations, and the R implementation is expected to facilitate modelling of longitudinal data for studies of both animal and human populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a methodology for reducing a straight line fitting regression problem to a Least Squares minimization one. This is accomplished through the definition of a measure on the data space that takes into account directional dependences of errors, and the use of polar descriptors for straight lines. This strategy improves the robustness by avoiding singularities and non-describable lines. The methodology is powerful enough to deal with non-normal bivariate heteroscedastic data error models, but can also supersede classical regression methods by making some particular assumptions. An implementation of the methodology for the normal bivariate case is developed and evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The applicability of a meshfree approximation method, namely the EFG method, on fully geometrically exact analysis of plates is investigated. Based on a unified nonlinear theory of plates, which allows for arbitrarily large rotations and displacements, a Galerkin approximation via MLS functions is settled. A hybrid method of analysis is proposed, where the solution is obtained by the independent approximation of the generalized internal displacement fields and the generalized boundary tractions. A consistent linearization procedure is performed, resulting in a semi-definite generalized tangent stiffness matrix which, for hyperelastic materials and conservative loadings, is always symmetric (even for configurations far from the generalized equilibrium trajectory). Besides the total Lagrangian formulation, an updated version is also presented, which enables the treatment of rotations beyond the parameterization limit. An extension of the arc-length method that includes the generalized domain displacement fields, the generalized boundary tractions and the load parameter in the constraint equation of the hyper-ellipsis is proposed to solve the resulting nonlinear problem. Extending the hybrid-displacement formulation, a multi-region decomposition is proposed to handle complex geometries. A criterium for the classification of the equilibrium`s stability, based on the Bordered-Hessian matrix analysis, is suggested. Several numerical examples are presented, illustrating the effectiveness of the method. Differently from the standard finite element methods (FEM), the resulting solutions are (arbitrary) smooth generalized displacement and stress fields. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A literatura internacional que analisa os fatores impactantes das transações com partes relacionadas concentra-se no Reino Unido, nos EUA e no continente asiático, sendo o Brasil um ambiente pouco investigado. Esta pesquisa tem por objetivo investigar tanto os fatores impactantes dos contratos com partes relacionadas, quanto o impacto dessas transações no desempenho das empresas brasileiras. Estudos recentes que investigaram as determinantes das transações com partes relacionadas (TPRs), assim como seus impactos no desempenho das empresas, levaram em consideração as vertentes apresentadas por Gordon, Henry e Palia (2004): (a) de conflitos de interesses, as quais apoiam a visão de que as TPRs são danosas para os acionistas minoritários, implicando expropriação da riqueza deles, por parte dos controladores (acionistas majoritários); e (b) transações eficientes que podem ser benéficas às empresas, atendendo, desse modo, aos objetivos econômicos subjacentes delas. Esta pesquisa apoia-se na vertente de conflito de interesses, com base na teoria da agência e no fato de que o cenário brasileiro apresenta ter como característica uma estrutura de propriedade concentrada e ser um país emergente com ambiente legal caracterizado pela baixa proteção aos acionistas minoritários. Para operacionalizar a pesquisa, utilizou-se uma amostra inicial composta de 70 empresas com ações listadas na BM&FBovespa, observando o período de 2010 a 2012. Os contratos relacionados foram identificados e quantificados de duas formas, de acordo com a metodologia aplicada por Kohlbeck e Mayhew (2004; 2010) e Silveira, Prado e Sasso (2009). Como principais determinantes foram investigadas proxies para captar os efeitos dos mecanismos de governança corporativa e ambiente legal, do desempenho das empresas, dos desvios entre direitos sobre controle e direitos sobre fluxo de caixa e do excesso de remuneração executiva. Também foram adicionadas variáveis de controle para isolar as características intrínsecas das firmas. Nas análises econométricas foram estimados os modelos pelos métodos de Poisson, corte transversal agrupado (Pooled-OLS) e logit. A estimação foi feita pelo método dos mínimos quadrados ordinários (MQO), e para aumentar a robustez das estimativas econométricas, foram utilizadas variáveis instrumentais estimadas pelo método dos momentos generalizados (MMG). As evidências indicam que os fatores investigados impactam diferentemente as diversas medidas de TPRs das empresas analisadas. Verificou-se que os contratos relacionados, em geral, são danosos às empresas, impactando negativamente o desempenho delas, desempenho este que é aumentado pela presença de mecanismos eficazes de governança corporativa. Os resultados do impacto das medidas de governança corporativa e das características intrínsecas das firmas no desempenho das empresas são robustos à presença de endogeneidade com base nas regressões com variáveis instrumentais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia