990 resultados para Gene Fusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrosis. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osseo-induction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs. MSCs were kept in 1:control medium, 2:osteogenic medium±alginate beads, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, alkaline phosphatase assay and histological staining were performed. Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51Pto the co- cultures, however, induced mineralization of MSCs in presence of NPC. We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrose. It is hence appealing to develop biomaterials that can enhance bone formation. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osteoinduction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Methods: Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs in a co-culture set-up. MSCs were kept in 1:control medium, 2:osteogenic medium+alginate control, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, Alkaline Phosphatase (ALP) assay and histological staining were performed. Results: Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51P to the co-cultures induced mineralization of MSCs, however a reduced ALP was observed. Conclusion: We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degenerate oligonucleotide primers derived from conserved cysteine protease sequences were used in the reverse transcription polymerase chain reaction to amplify seven different cysteine protease cDNA clones, Fcp1-7, from RNA isolated from adult Fasciola hepatica. Five of the amplified F. hepatica sequences showed homology to the cathepsin L type and two were more related to the cathepsin B type. Southern blot analysis suggests that some members of this protease gene family are present in multiple copies. Northern blot analysis revealed differences in the levels of steady state mRNA expression for some of these proteases. The 5' and the 3' regions of Fcp1 were amplified using the rapid amplification of cDNA ends PCR protocol (RACE-PCR) and an additional clone was obtained by screening a lambda gt10 cDNA library using Fcp1 as a probe. The Fcp1 cDNA fragment was also subcloned in the expression vector pGEX and expressed as a glutathione-S-transferase (GST) fusion protein in Escherichia coli. Antibodies, raised in rabbits against the GST:Fcp1 fusion protein, were used in western blot analysis to examine expression in different life-cycle stages of F. hepatica. In extracts from adult and immature parasites, the immune serum recognised predominantly two proteins of 30 kDa and 38 kDa. In other parasite stages, proteins of different molecular weight were recognised by the anti-GST:Fcp1 antiserum, indicating stage-specific gene expression or processing of Fcp1. In gelatine substrate gel analysis, strong proteolytic activity could be detected at 30 kDa, but not at 38 kDa, suggesting that the 30 kDa protein represents the mature enzyme and the 38 kDa protein the proenzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In both euploid Chinese hamster (Cricetulus griseus) cells and pseudodiploid Chinese hamster ovary (CHO) cells, gene assignments were accomplished by G band chromosome and isozyme analysis (32 isozymes) of interspecific somatic cell hybrids obtained after HAT selection of mouse CL 1D (TK('-)) cells which were PEG-fused with either euploid Chinese hamster cells or HPRT('-) CHO cells. Hybrids slowly segregated hamster chromosomes. Clone panels consisting of independent hybrid clones and subclones containing different combinations of Chinese hamster chromosomes and isozymes were established from each type of fusion.^ These clone panels enabled us to provisionally assign the loci for: nucleoside phosphorylase (NP), glyoxalase (GLO), glutathione reductase (GSR), adenosine kinase (ADK), esterase D (ESD), peptidases B and S (PEPB and -S) and phosphoglucomutase 2 (PGM2, human nomenclature) to chromosome 1; adenylate kinase 1 (AK1), adenosine deaminase (ADA) and inosine triosephosphatase (ITP) to chromosome 6; triosephosphate isomerase (TPI) to chromosome 8; and glucose phosphate isomerse (GPI) and peptidase D (PEPD) to chromosome 9.^ We also confirm the assignments of 6-phosphogluconate dehydrogenase (PGD), PGM1, enolase 1 (ENO1) and diptheria toxin sensitivity (DTS) to chromosome 2 as well as provisionally assign galactose-1-phosphate uridyl transferase (GALT) and AK2 to chromosome 2. Selection in either HAT or BrdU for hybrids that had retained or lost the chromosome carrying the locus for TK enabled us to assign the loci for TK, galactokinase (GALK) and acid phosphatase 1 (ACP1) to Chinese hamster chromosome 7.^ These results are discussed in relation to current theories on the basis for high frequency of drug resistant autosomal recessive mutants in CHO cells and conservation of mammalian autosomal linkage groups. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chimeric retroviral vector (33E67) containing a CD33-specific single-chain antibody was generated in an attempt to target cells displaying the CD33 surface antigen. The chimeric envelope protein was translated, processed, and incorporated into viral particles as efficiently as wild-type envelope protein. The viral particles carrying the 33E67 envelope protein could bind efficiently to the CD33 receptor on target cells and were internalized, but no gene transfer occurred. A unique experimental approach was used to examine the basis for this postbinding block. Our data indicate that the chimeric envelope protein itself cannot participate in the fusion process, the most reasonable explanation being that this chimeric protein cannot undergo the appropriate conformational change that is thought to be triggered by receptor binding, a suggested prerequisite to subsequent fusion and core entry. These results indicate that the block to gene transfer in this system, and probably in most of the current chimeric retroviral vectors to date, is the inability of the chimeric envelope protein to undergo this obligatory conformational change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In acute promyelocytic leukemia (APL), the typical t(15;17) and the rare t(11;17) translocations express, respectively, the PML/RARα and PLZF/RARα fusion proteins (where RARα is retinoic acid receptor α). Herein, we demonstrate that the PLZF and PML proteins interact with each other and colocalize onto nuclear bodies (NBs). Furthermore, induction of PML expression by interferons leads to a recruitment of PLZF onto NBs without increase in the levels of the PLZF protein. PML/RARα and PLZF/RARα localize to the same microspeckled nuclear domains that appear to be common targets for the two fusion proteins in APL. Although PLZF/RARα does not affect the localization of PML, PML/RARα delocalizes the endogenous PLZF protein in t(15;17)-positive NB4 cells, pointing to a hierarchy in the nuclear targeting of these proteins. Thus, our results unify the molecular pathogenesis of APL with at least two different RARα gene translocations and stress the importance of alterations of PLZF and RARα nuclear localizations in this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gene encoding the rice 16.9-kDa class I low-molecular-mass (LMM) heat-shock protein (HSP), Oshsp16.9, was introduced into Escherichia coli using the pGEX-2T expression vector to analyze the possible function of this LMM HSP under heat stress. It is known that E. coli does not normally produce class I LMM HSPs. We compared the survivability of E. coli XL1-Blue cells transformed with a recombinant plasmid containing a glutathione S-transferase (GST)–Oshsp16.9 fusion protein (pGST-FL cells) with the control E. coli cells transformed with the pGEX-2T vector (pGST cells) under heat-shock (HS) after isopropyl β-d-thiogalactopyranoside induction. The pGST-FL cells demonstrated thermotolerance at 47.5°C, a treatment that was lethal to the pGST cells. When the cell lysates from these two E. coli transformants were heated at 55°C, the amount of protein denatured in the pGST-FL cells was 50% less than that of the pGST cells. Similar results as pGST-FL cells were obtained in pGST-N78 cells (cells produced a fusion protein with only the N-terminal 78 aa in the Oshsp16.9 portion) but not in pGST-C108 cells (cells produced a fusion protein with C-terminal 108 aa in the Oshsp16.9 portion). The acquired thermotolerant pGST-FL cells synthesized three types of HSPs, including the 76-, 73-, and 64-kDa proteins according to their abundance at a lethal temperature of 47.5°C. This finding indicates that a plant class I LMM HSP, when effectively expressed in transformed prokaryotic cells that do not normally synthesize this class of LMM HSPs, may directly or indirectly increase thermotolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alveolar rhabdomyosarcoma is an aggressive pediatric cancer of striated muscle characterized in 60% of cases by a t(2;13)(q35;q14). This results in the fusion of PAX3, a developmental transcription factor required for limb myogenesis, with FKHR, a member of the forkhead family of transcription factors. The resultant PAX3-FKHR gene possesses transforming properties; however, the effects of this chimeric oncogene on gene expression are largely unknown. To investigate the actions of these transcription factors, both Pax3 and PAX3-FKHR were introduced into NIH 3T3 cells, and the resultant gene expression changes were analyzed with a murine cDNA microarray containing 2,225 elements. We found that PAX3-FKHR but not PAX3 activated a myogenic transcription program including the induction of transcription factors MyoD, Myogenin, Six1, and Slug as well as a battery of genes involved in several aspects of muscle function. Notable among this group were the growth factor gene Igf2 and its binding protein Igfbp5. Relevance of this model was suggested by verification that three of these genes (IGFBP5, HSIX1, and Slug) were also expressed in alveolar rhabdomyosarcoma cell lines. This study utilizes cDNA microarrays to elucidate the pattern of gene expression induced by an oncogenic transcription factor and demonstrates the profound myogenic properties of PAX3-FKHR in NIH 3T3 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infant acute lymphoblastic leukemia (ALL) with MLL gene rearrangements is characterized by early pre-B phenotype (CD10−/CD19+) and poor treatment outcome. The t(4;11), creating MLL-AF4 chimeric transcripts, is the predominant 11q23 chromosome translocation in infant ALL and is associated with extremely poor prognosis as compared with other 11q23 translocations. We analyzed an infant early preB ALL with ins(5;11)(q31;q13q23) and identified the AF5q31 gene on chromosome 5q31 as a fusion partner of the MLL gene. The AF5q31 gene, which encoded a protein of 1,163 aa, was located in the vicinity of the cytokine cluster region of chromosome 5q31 and contained at least 16 exons. The AF5q31 gene was expressed in fetal heart, lung, and brain at relatively high levels and fetal liver at a low level, but the expression in these tissues decreased in adults. The AF5q31 protein was homologous to AF4-related proteins, including AF4, LAF4, and FMR2. The AF5q31 and AF4 proteins had three homologous regions, including the transactivation domain of AF4, and the breakpoint of AF5q31 was located within the region homologous to the transactivation domain of AF4. Furthermore, the clinical features of this patient with the MLL-AF5q31 fusion transcript, characterized by the early pre-B phenotype (CD10−/CD19+) and poor outcome, were similar to those of patients having MLL-AF4 chimeric transcripts. These findings suggest that AF5q31 and AF4 might define a new family particularly involved in the pathogenesis of 11q23-associated-ALL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To create a universal system for the control of gene expression, we have studied methods for the construction of novel polydactyl zinc finger proteins that recognize extended DNA sequences. Elsewhere we have described the generation of zinc finger domains recognizing sequences of the 5′-GNN-3′ subset of a 64-member zinc finger alphabet. Here we report on the use of these domains as modular building blocks for the construction of polydactyl proteins specifically recognizing 9- or 18-bp sequences. A rapid PCR assembly method was developed that, together with this predefined set of zinc finger domains, provides ready access to 17 million novel proteins that bind the 5′-(GNN)6-3′ family of 18-bp DNA sites. To examine the efficacy of this strategy in gene control, the human erbB-2 gene was chosen as a model. A polydactyl protein specifically recognizing an 18-bp sequence in the 5′-untranslated region of this gene was converted into a transcriptional repressor by fusion with Krüppel-associated box (KRAB), ERD, or SID repressor domains. Transcriptional activators were generated by fusion with the herpes simplex VP16 activation domain or with a tetrameric repeat of VP16’s minimal activation domain, termed VP64. We demonstrate that both gene repression and activation can be achieved by targeting designed proteins to a single site within the transcribed region of a gene. We anticipate that gene-specific transcriptional regulators of the type described here will find diverse applications in gene therapy, functional genomics, and the generation of transgenic organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human type VII collagen gene (COL7A1) recently has been identified as an immediate-early response gene for transforming growth factor β (TGF-β)/SMAD signaling pathway. In this study, by using MDA-MB-468 SMAD4−/− breast carcinoma cells, we demonstrate that expression of SMAD4 is an absolute requirement for SMAD-mediated promoter activity. We also demonstrate that the SMAD binding sequence (SBS) representing the TGF-β response element in the region −496/−444 of the COL7A1 promoter functions as an enhancer in the context of a heterologous promoter. Electrophoretic mobility-shift assays with nuclear extracts from COS-1 cells transfected with expression vectors for SMADs 1–5 indicate that SMAD3 forms a complex with a migration similar to that of the endogenous TGF-β-specific complex observed in fibroblast extracts. Electrophoretic mobility-shift assays using recombinant glutathione S-transferase-SMAD fusion proteins indicate that both SMAD4 and C-terminally truncated SMAD3, but not SMAD2, can bind the COL7A1 SBS. Coexpression of SMAD3 and SMAD4 in COS-1 cells leads to the formation of two complexes: a DNA/protein complex containing SMAD3 alone and another slower-migrating complex containing both SMAD3 and SMAD4, the latter complex not being detected in fibroblasts. Maximal transactivation of COL7A1 SBS-driven promoters in either MDA-MB-468 carcinoma cells or fibroblasts requires concomitant overexpression of SMAD3 and SMAD4. These data may represent the first identification of a functional homomeric SMAD3 complex regulating a human gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A DNA sequence has been obtained for a 35.6-kb genomic segment from Heliobacillus mobilis that contains a major cluster of photosynthesis genes. A total of 30 ORFs were identified, 20 of which encode enzymes for bacteriochlorophyll and carotenoid biosynthesis, reaction-center (RC) apoprotein, and cytochromes for cyclic electron transport. Donor side electron-transfer components to the RC include a putative RC-associated cytochrome c553 and a unique four-large-subunit cytochrome bc complex consisting of Rieske Fe-S protein (encoded by petC), cytochrome b6 (petB), subunit IV (petD), and a diheme cytochrome c (petX). Phylogenetic analysis of various photosynthesis gene products indicates a consistent grouping of oxygenic lineages that are distinct and descendent from anoxygenic lineages. In addition, H. mobilis was placed as the closest relative to cyanobacteria, which form a monophyletic origin to chloroplast-based photosynthetic lineages. The consensus of the photosynthesis gene trees also indicates that purple bacteria are the earliest emerging photosynthetic lineage. Our analysis also indicates that an ancient gene-duplication event giving rise to the paralogous bchI and bchD genes predates the divergence of all photosynthetic groups. In addition, our analysis of gene duplication of the photosystem I and photosystem II core polypeptides supports a “heterologous fusion model” for the origin and evolution of oxygenic photosynthesis.