256 resultados para Gastropod Haliotis
Resumo:
During agonistic interactions the motivation of each contestant is expected to vary because of increased information and changes in fighting ability. In shell fights between hermit crabs over gastropod shells, attackers rap their shell in a series of bouts against that of the defender whereas defenders remain withdrawn into their shells until the encounter is resolved; either the defender is evicted from its shell or the attacker 'gives up' and the defender retains its shell. We assessed the motivational state of attackers for performing rapping by measuring the duration of startle responses elicited by a novel stimulus. We staged fights between pairs of crabs in six different groups defined by the potential gain in shell quality available to attackers (high or low) and by the point at which the novel stimulus was applied (prior to rapping, after one bout or after four bouts). Startle response duration decreased during the first four bouts of fighting and showed a U-shaped relationship with the relative difference in size between the crabs. There was, no difference in startle response duration between high- and low-gain groups. Individuals showing short startle responses were likely to be victorious and we conclude that the relationship between the relative size difference of the opponents and. startle duration reflects that between size difference and the cost of gaining an eviction. (C) 2001 The Association for the Study of Animal Behaviour.
Resumo:
Aggressive interactions between animals are often settled by the use of repeated signals that reduce the risk of injury from combat but are expected to be costly. The accumulation of lactic acid and the depletion of energy stores may constrain activity rates during and after fights and thus represent significant costs of signalling. We tested this by analysing the concentrations of lactate and glucose in the haemolymph of hermit crabs following agonistic interactions over the ownership of the gastropod shells that they inhabit. Attackers and defenders play distinct roles of sender and receiver that are fixed for the course of the encounter. Attackers perform bouts of 'shell rapping', which vary in vigour between attackers and during the course of the encounter, and are a key predictor of victory. In contrast to the agonistic behaviour of other species, we can quantify the vigour of fighting. We demonstrate, to our knowledge for the first time, an association between the vigour of aggressive activity and a proximate cost of signalling. We show that the lactate concentration in attackers increases with the amount of shell rapping, and that this appears to constrain the vigour of subsequent rapping. Furthermore, attackers, but not defenders, give up when the concentration of lactate is high. Glucose levels in attackers also increase with the amount of rapping they perform, but do not appear to influence their decision to give up. Defenders are more likely to lose when they have particularly low levels of glucose. We conclude that the two roles use different decision rules during these encounters.
Resumo:
A conservation priority in the marine environment is the establishment of ecologically coherent reserve networks. Since these networks will integrate existent reserves, an understanding of spatial genetic diversity and genetic connectivities between areas is necessary. Using Strangford Lough marine nature reserve (MNR) as a model, spatial genetic analyses were employed to evaluate the function of the lough. Samples of the marine gastropod Nucella lapillus (L.) from 7 locations in the reserve and adjacent areas were screened at 6 microsatellites. Genetic variation was temporally stable. Significant genetic structuring (F-ST = 0.133) was observed among samples. Genetic divergence and isolation by distance indicated reduced gene flow between the marine reserve and coastal samples relative to that between adjacent coastal samples. Partitioning of genetic variation between the reserve and coast was significant (AMOVA, 7.45%, p
Resumo:
In animal contests selection should favour information gathering regarding the likely costs and benefits of continued conflict, and displays may provide a means for contestants to gain information about the fighting ability or aggressive intent of competitors. However, there is debate over the reliability of such displays and low levels of deception may occur within otherwise honest signalling systems. Hermit crabs use displays involving the chelipeds during agonistic encounters. We examined how variation in chelae size in relation to body size, a determinant of fighting ability, affects their use in displays and the process and outcome of contests over gastropod shells. In accordance with deceptive use of an otherwise honest signal, we found that contestants with large chelipeds for their body size spent more time performing the cheliped presentation display. Moreover, cheliped residuals and displays influenced the escalation level of encounters. There was a positive association between cheliped displays and the occurrence of 'grappling', but a negative association between displays and the occurrence of shell fights, suggesting that displays may signal aggressive intent and a reluctance to back off or accept the more passive defender role in a fight. Furthermore, the smaller of the two contestants in shell fights had larger cheliped residuals compared to those smaller contestants not involved in shell fights, which is consistent with disrupted opponent assessment. This study adds to mounting evidence that when acting as a signaller, individuals for whom the display exaggerates competitive ability attempt to manipulate opponents, using the display more often. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Agonistic interactions between animals are often settled by the use of repeated signals which advertise the resource-holding potential of the sender. According to the sequential assessment game this repetition increases the accuracy with which receivers may assess the signal, but under the cumulative assessment model the repeated performances accumulate to give a signal of stamina. These models may be distinguished by the temporal pattern of signalling they predict and by the decision rules used by the contestants. Hermit crabs engage in shell fights over possession of the gastropod shells that they inhabit. During these interactions the two roles of signaller and receiver may be examined separately because they are fixed for the duration of the encounter. Attackers rap their shell against that of the defender in a series of bouts whereas defenders remain tightly withdrawn into their shells for the duration of the contest. At the end of a fight the attacker may evict the defender from its shell or decide to give up without first effecting an eviction; the decision for defenders is either to maintain a grip on its shell or to release the shell and allow itself to be evicted. We manipulated fatigue levels separately for attackers and defenders, by varying the oxygen concentration of the water that they are held in prior to fighting, and examined the effects that this has on the likelihood of each decision and on the temporal pattern of rapping. We show that the vigour of rapping and the likelihood of eviction are reduced when the attacker is subjected to low oxygen but that this treatment has no effect on rates of eviction when applied to defenders. We conclude that defenders compare the vigour of rapping with an absolute threshold rather than with a relative threshold when making their decision. The data are compatible with the cumulative assessment model and with the idea that shell rapping signals the stamina of attackers, but do not fit the predictions of the sequential assessment game.
Resumo:
On rocky shores, cover of macroalgae is often greater growing epibiotically on mussels compared to algae growing directly attached to rock. A survey of two shores on the east coast of Ireland confirmed that mussel beds contained greater percentage algal cover and more diverse algal assemblages compared to those on rock. The reasons for this difference are not clear. It has been suggested that mussel beds provide a refuge for algae from grazing gastropods. Surprisingly, we found no evidence to support this. Using wax discs, gastropod grazing patterns were found to be similar within the mussel beds as on rock. The mussel beds do not appear to provide a refuge for algae from grazing activity at this scale and we suggest other possible mechanisms for the prevalence of epibiotic algal cover on mussels. Intertidal grazers may in fact affect the epibiotic algae on mussels and thereby affect indirectly the persistence of mussel beds.
Resumo:
Hermit crabs use empty gastropod shells as protective armour and enlarged chelipeds as signals and weapons. However, carrying armour and arms may impose energy costs that result in increased lactate and hence potential fatigue and there may be consequent effects on general activity. We investigated whether variation in shell and cheliped size influences lactate levels in hermit crabs. Lactate was positively related to residual cheliped size for both sexes and was higher in males than females; when we controlled for body size, the former had larger chelipeds. Shell weight unexpectedly had no effect on lactate but crabs in small shells had high lactate, possibly because of reduced ability to maintain a respiratory current. The size of natural shells had no effect on activity but the addition of food odour increased locomotion. However, activity was not related to lactate. We conclude that possession of larger chelipeds than expected for body size imposes significant costs and may limit development of sexual dimorphism. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Many assemblages contain numerous rare species, which can show large increases in abundances. Common species can become rare. Recent calls for experimental tests of the causes and consequences of rarity prompted us to investigate competition between co-existing rare and common species of intertidal gastropods. In various combinations, we increased densities of rare gastropod species to match those of common species to evaluate effects of intra- and interspecific competition on growth and survival of naturally rare or naturally common species at small and large densities. Rarity per se did not cause responses of rare species to differ from those of common species. Rare species did not respond to the abundances of other rare species, nor show consistently different responses from those of common species. Instead, individual species responded differently to different densities, regardless of whether they are naturally rare or abundant. This type of experimental evidence is important to be able to predict the effects of increased environmental variability on rare as opposed to abundant species and therefore, ultimately, on the structure of diverse assemblages. © 2012 Inter-Research.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
The marine topshell, Phorcus (Osilinus) turbinatus, is a common component of many archaeological sites in the Mediterranean. This species has been successfully used as a palaeoclimate proxy in Italy. To test whether d18O from P. turbinatus shells can serve as a reliable palaeoclimate archive for other regions of the Mediterranean, we collected live P. turbinatus from the northeast coast of Malta each month for a year. The d18OSHELL values of the outermost growth increments of these live-collected shells ranged between-0.4 and+2.4‰. These values correspond to growing temperatures calculated from shell edge d18O of between 15 °C and 27 °C. Calculated shell edge sea surface temperatures are highly correlated with instrumental records of sea surface temperature recorded over the period of collection. The individuals analysed for this study are smaller than P. turbinatus from populations studied elsewhere in the Mediterranean. Nonetheless, d18OSHELL provides a robust record of sea surface temperatures, suggesting that smaller/younger shells in archaeological deposits can still provide reliable palaeothermometry records. This study extends the upper growth limit P. turbinatus by 2 °C compared with the previous studies of P. turbinatus in the Mediterranean and suggests that, contrary to the previous studies, growth shutdown does not occur in all P. turbinatus when sea surface temperatures exceed 25 °C. This may reflect the higher sample resolution that can be obtained from smaller/faster growing shells, or it may reflect actual higher growth tolerances of P. turbinatus populations in Malta. By showing that P. turbinatus precipitate their shells in d18O equilibrium with surrounding sea water, this study reinforces the potential for the stable isotope chemistry of P. turbinatus shells preserved in Mediterranean archaeological sites to provide a window into the climate and seasonality regimes of the past.
Resumo:
The main aims of the present study, conducted in the framework of the MONIQUA-Egadi Scientific Project, were twofold: first, to make the first step in the development and validation of an ecotoxicological approach for the assessment of marine pollution in coastal environments on the basis of a set of biomarker responses in new sentinel species; and second, to obtain preliminary information on environmental quality in an Italian marine protected area, the Egadi Islands (Sicily). Several cytochrome P450-dependent mixed-function oxidase activities were measured in the following sentinel species: rainbow wrasse Coris julis, gastropod limpet Patella caerulea, and sea urchin Paracentrotus lividus. The results suggest that specimens from the Favignana Harbor may be exposed to P450 inducers, whereas most of the other sites seem to share similar environmental quality. The proposed approach has potential for assessment of environmental quality in marine protected areas.
Resumo:
Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change. © 2012 The Royal Society.
Resumo:
To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial.
Resumo:
Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter-trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context-dependency of the effects of consumer species loss by conducting a 15-month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat-dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non-interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change.
Resumo:
Radiation of dramatically disparate forms among the phylum Mollusca remains a key question in metazoan evolution, and requires careful evaluation of homology of hard parts throughout the deep fossil record. Enigmatic early Cambrian taxa such as Halkieria and Wiwaxia (in the clade Halwaxiida) have been proposed to represent stem-group aculiferan molluscs (Caudofoveata+Solenogastres+Polyplacophora), as complex scleritomes were considered to be unique to aculiferans among extant molluscs. The 'scaly-foot gastropod' (Neomphalina: Peltospiridae) from hydrothermal vents of the Indian Ocean, however, also carries dermal sclerites and thus challenges this inferred homology. Despite superficial similarities to various mollusc sclerites, the scaly-foot gastropod sclerites are secreted in layers covering outpockets of epithelium and are largely proteinaceous, while chiton (Polyplacophora: Chitonida) sclerites are secreted to fill an invaginated cuticular chamber and are largely calcareous. Marked differences in the underlying epithelium of the scaly-foot gastropod sclerites and operculum suggest that the sclerites do not originate from multiplication of the operculum. This convergence in different classes highlights the ability of molluscs to adapt mineralized dermal structures, as supported by the extensive early fossil record of molluscs with scleritomes. Sclerites of halwaxiids are morphologically variable, undermining the assumed affinity of specific taxa with chitons, or the larger putative clade Aculifera. Comparisons with independently derived similar structures in living molluscs are essential for determining homology among fossils and their position with respect to the enigmatic evolution of molluscan shell forms in deep time.
Resumo:
Background: Theoretically, each species’ ecological niche is phylogenetically-determined and expressed spatially as the species’ range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition.
Methods: We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N) were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N.
Results: There was an increase in isotopic variation at high shore levels, where E. peruviana’s preferred resource, tide-deposited particulate organic matter (POM), appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore.
Discussion: Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition, this may be a direct factor in setting their range limit.