970 resultados para Gas supply units – GSUs
Resumo:
Japan’s two major electricity producing companies reached a preliminary agreement recently to establish a joint venture for the procurement of fossil fuel resources, primarily liquefied natural gas (LNG). The authors of this commentary ask whether this commercial initiative could serve as an example to Europe of how to increase the negotiating power of individual EU member states. They conclude that a private joint gas procurement company may indeed offer a solution for EU member states in Central and Eastern Europe, instead of yet another source of confrontation. Given the political volatility in the region, it could well be the key to balancing out the need for security of supply with an offer to guarantee security of demand, thereby creating the climate for stable commercial relations.
Resumo:
In its Communication on an Energy Union published in February 2015, the European Commission committed itself to “explore the full potential of liquefied natural gas (LNG), including as a back-up in crisis situations when insufficient gas is coming into Europe through the existing pipeline system” and to address the potential of gas storage in Europe by developing a comprehensive LNG and storage strategy by the end of 2015 or early in 2016. This is a comprehensible move in the current context. Geopolitical tensions between the EU and Russia explain the EU’s willingness to further diversify its supply sources of natural gas to reinforce its long-term energy security on the one hand, and to strengthen its ability to solve future crises on the other hand. Moreover, the current market dynamics could support diversification towards LNG. Increasing the flexibility of LNG trade, decreasing LNG prices and LNG charter rates and an apparent price convergence between the European and the Asia-Pacific LNG imports would all reinforce the economic viability of such a strategy. This Policy Brief makes three main points: • For the LNG and gas storage strategy to work, it needs to be embedded in the realities of the natural gas market. • The key to a successful LNG strategy is to develop sufficient infrastructure. • The LNG strategy needs an innovation component.
Resumo:
The spatial data set delineates areas with similar environmental properties regarding soil, terrain morphology, climate and affiliation to the same administrative unit (NUTS3 or comparable units in size) at a minimum pixel size of 1km2. The scope of developing this data set is to provide a link between spatial environmental information (e.g. soil properties) and statistical data (e.g. crop distribution) available at administrative level. Impact assessment of agricultural management on emissions of pollutants or radiative active gases, or analysis regarding the influence of agricultural management on the supply of ecosystem services, require the proper spatial coincidence of the driving factors. The HSU data set provides e.g. the link between the agro-economic model CAPRI and biophysical assessment of environmental impacts (updating previously spatial units, Leip et al. 2008), for the analysis of policy scenarios. Recently, a statistical model to disaggregate crop information available from regional statistics to the HSU has been developed (Lamboni et al. 2016). The HSU data set consists of the spatial layers provided in vector and raster format as well as attribute tables with information on the properties of the HSU. All input data for the delineation the HSU is publicly available. For some parameters the attribute tables provide the link between the HSU data set and e.g. the soil map(s) rather than the data itself. The HSU data set is closely linked the USCIE data set.
Resumo:
The Cretaceous Equatorial Atlantic Gateway between the Central and South Atlantic basins is of interest not only for paleoceanographic and paleoclimatic studies, but also because it provided particularly favourable conditions for the accumulation and preservation of organic-rich sediments. Deposition of carbonaceous sediments along the Côte d'Ivoire-Ghana Transform Margin (Ocean Drilling Program Leg 159) was intimately linked to the plate tectonic and paleoceanographic evolution of this gateway. Notably, the formation of a marginal basement ridge on the southeastern border of the transform margin provided an efficient shelter of the landward Deep Ivorian Basin against erosive and potentially oxidizing currents. Different subsidence histories across the transform margin were responsible for the development of distinct depositional settings on the crest and on both sides of the basement ridge. Whereas the southern, oceanward flank of the basement ridge was characterized by rapid, continuous deepening since last Albian-early Cenomanian, marine sedimentation on the northern, landward flank was interrupted by a period of uplift and erosion in the late Albian, and rapid subsidence started after the early Coniacian. Organic-rich sediments occur throughout almost the entire Cretaceous section, but hydrogen-rich marine black shales were exclusively recovered from core sections above an uplift-related unconformity. These black shales formed when separation of Africa and South America was sufficient to allow permanent oceanic midwater exchange after the late Albian. Four periods of black shale accumulation are recovered, some of them are correlated with the global oceanic anoxic events: in the last Albian-earliest Cenomanian, at the Cenomanian-Turronian boundary, during the middle Coniacian-early Campanian, and in the mid-Maastrichtian. These periods were characterized by increasing carbon flux to the seafloor, induced by enhanced palaeoproductivity and intensified supply of terrestrial organic matter. Black shale depostion appears to be intimately linked to periods of rising or maximum eustatic sea level and to the expansion of the oxygen minimum zone, as indicated by foraminiferal biofacies. Intervals between black shales units, in contrast, indicate a shrinking oxygen minimum zone and enhanced detrital flux rates, probably related to lowering sea level. Upper Cretaceous detritral limestones with high porosities may provide excellent hydrocarbon reservoirs, alsthough their areal extent appears to be limited. Palaeogene porcellanites, capped by Neogene pelagic marls and clays, extend over a wider area and max provide another target for hydrocarbon exploration.
Resumo:
Latest issue consulted: 98. Jahgr., Heft 1 (4. Jan. 1957).
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Subtitle varies slightly.
Resumo:
Mode of access: Internet.
Resumo:
Chiefly tables.
Resumo:
Publication suspended 1945?-June? 1947.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Supply chains are advocated widely as being the new units for commercial competition and developments have made the sharing of supply chain wide information increasingly common. Most organisations however still make operational decisions intended to maximise local organisational performance. With improved information sharing a holistic focus for operational decisions should now be possible. The development of a pan supply chain performance framework requires an examination of the conditions under which holistic-decisions provide benefits to either the individual enterprise or the complete supply chain. This paper presents the background and supporting methodology for a study of the impact of an overall supply chain performance metric framework upon local logistics decisions and the conditions under which such a framework would improve overall supply chain performance. The methodology concludes a simulation approach using a functionally extended Gensym's e-SCOR model, together with case based triangulation, to be optimum. Copyright © 2007 Inderscience Enterprises Ltd.
Resumo:
Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.
Resumo:
This work describes how the physical properties of a solvent affect the design variables of a physical gas absorption process. The role of every property in determining the capital and the running cost of a process has been specified. Direct mathematical relationships have been formulated between every item of capital or running cost and the properties which are related to that item. The accuracy of the equations formulated has been checked by comparing their outcome with some actual design data. A good agreement has been found. The equations formulated may be used to evaluate on the basis of economics any suggested new solvents. A group of solvents were selected for evaluation. Their physical properties were estimated or collected as experimental data. The selected ones include three important solvents, the first is polyethylene glycol dimethyl ether (Selexol) which represents the currently most successful one, The other two solvents are acetonyl acetone (B2) and n-formyl morpholine which have been suggested previously as potential credible alternatives to the current ones. The important characteristics of: acetonyl acetone are its high solubility and its low viscosity, while the n-formyl morpholine is characterised by its low vapour pressure and its high selectivity. It was found that acetonyl acetone (B2) is the most attractive solvent for commercial applications particularly for process configurations that:include heat exchangers and strippers. The effect of the process configuration on the selected solvent was investigated in detail and it was found that there is no universal solvent which is the best for any process configuration, but that there is a best solvent for a given process configuration. In previous work, acetonyl acetone was suggested as a commercially promising physical solvent. That suggestion was not fully based on experimental measurement of all the physical properties. The viscosity of acetonyl acetone and its solubility at 1 atm were measured but the vapour pressure and the solubility of C02 and CH4 at high pressure were predicted. In this work, the solubilities of C02, CH4 and C3H8 in acetenyl acetone were measured for a partial pressure range of (2 ~ 22) bar at 25°C, The vapour pressure of this solvent was also measured, and the Antoine equation was formulated from tbe experimental data. The experimental data were found to be not In agreement with the predicted ones, so acetonyl acetone was re-evaluated according to the experimental data. It was found that this solvent can be recommended for further trials in a pilot plant study or for small scale commercial units.