192 resultados para Gabbro


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg + Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca + Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti-rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B. This suggests that a significant mass fraction of more evolved products is needed to balance the high Mg# of the bulk hole. Calculations show that 25%-45% of average Eastern Atlantis II Fracture Zone basalt is needed to combine with 55%-75% of bulk Hole 735B rocks to give a melt of Mg# 0.637, parental to the most primitive Hole 735B cumulate. On the other hand, the parental melt with Mg# 0.637 is far too evolved to be in equilibrium with residual mantle olivine of Fo > 0.89. Therefore, a significant mass fraction of more primitive cumulate (e.g., high Mg# dunite and troctolite) is yet to be sampled. This hidden cumulate could well be deep in the lower crust or simply in the mantle section. We favor the latter because of the thickened cold thermal boundary layer atop the mantle beneath slow-spreading ridges, where cooling and crystallization of ascending mantle melts is inevitable. These observations and data interpretation require reconsideration of the popular concept of primary mantle melts and relationships among the extent of mantle melting, melt production, and the composition and thickness of igneous crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three Pleistocene, five Pliocene, and thirteen late and middle Miocene calcareous nannofossil datums have been identified in the Leg 170 cored sequences collected from a transect across the Middle America Trench off the Nicoya Peninsula. Although some nannofossil zones could not be delineated, particularly in the Pliocene and upper Miocene, there appears to be a complete or very nearly complete Pleistocene through lower Miocene section at Sites 1039 and 1040. The oldest assemblages, observed at Site 1039 and 1040, are latest early Miocene in age (nannofossil Zone NN4). These assemblages are associated with gabbro intrusions into the basal sediments (one contact metamorphic hornfels sample contains relict nannofossils), indicating an age for the intrusion event of between 15.6 and 18.2 Ma at both Sites 1039 and 1040. Reference Site 1039, located on the Cocos plate, provides the best-preserved sequence of sediments of late Pleistocene to latest early Miocene age. The sediments cored in the prism sections at Sites 1040, 1041, 1042, and 1043 all indicate that the age of nannofossil assemblages in the prism sediments, including the toe, wedge, and apron, are all Pleistocene with a considerable amount of upper Miocene reworking. A period of low sediment accumulation rates (~5.3 m/m.y.) is recorded for Pliocene and upper Miocene sediments at Sites 1039, 1040, and 1043. Pliocene calcareous nannofossil assemblages characteristic of the ~2.5- to 3.75-m.y. time interval (nannofossil Zones NN16 and equivalent nannofossil Subzones CN12b and CN12a) were not resolved at any site. Nannofossil Zones NN15, NN14, NN13, and NN12 (early late Pliocene to early Pliocene) could not be resolved at any site either because of the absence of marker species. Within the Miocene at Sites 1039 and 1040, nannofossil Zones NN10-NN6 were difficult to differentiate because of the absence of several species that define the zonal boundaries. These intervals, where the nannofossil zones have not been resolved or are partially resolved, are primarily composed of carbonate ooze deposited during an ~8.5-m.y. (2.5-11 Ma) low sediment accumulation rate time interval. The absence of many of the marker species is attributed to warmer water conditions during those periods. Many of the same marker species are absent in the sediments recovered from nearby Deep Sea Drilling Project Site 155 in the Panama Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A collection of dredge samples from the Hunter Fracture Zone includes holocrystalline massive and cumulose basic and ultrabasic rocks and volcanites of the ophiolite complex: from basalts to rhyolites. The ultrabasic rocks are largely serpentinized harzburgites and lherzolites; their relict mineralogy is typical of peridotite considered to be the refractory residue of partial melting of the mantle. Cumulate textured ultramafic rocks probably are related to the cumulate gabbro and granodiorite rather than to the residual mantle material. The gabbroic rocks are dominantly cumulate textured Pl-Opx-Cpx±Ol gabbronorite and Pl-Cpx±Ol gabbros; the mineral features of these rocks are the result of their crystallization at moderate pressure (in a moderate level magma chamber). The massive Pl-Cpx±Ol gabbros are less common. Green and brown-green Ca-amphibole has partially or totally replaced the clinopyroxene in many samples. There is an overlap in mineral chemistry between the cumulate rocks and the Opx-Cpx-Pl volcanic rocks and boninites. It is interpreted as an indication that the cumulate rocks were co-genetic with Opx-Cpx-Pl volcanic rocks and that they both constitute remnants of an island arc volcanic-plutonic series. The petrologic evidence indicates that ophiolite gabbroic rocks were derived from an island-arc rather than from a mid-ocean ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed hydrous partial melting experiments at shallow pressures (0.2 GPa) under slightly oxidizing conditions (NNO oxygen buffer) on oceanic cumulate gabbros drilled by ODP (Ocean Drilling Program) cruises to evaluate whether the partial melting of oceanic gabbro can generate SiO2-rich melts with compositions typical of oceanic plagiogranites. The experimental melts of the low-temperature runs broadly overlap those of natural plagiogranites. At 940 °C, the normalized SiO2 contents of the experimental melts of all systems range between 60 and 61 wt%, and at 900 °C between 63 and 68 wt%. These liquids are characterized by low TiO2 and FeOtot contents, similar to those of natural plagiogranites from the plutonic section of the oceanic crust, but in contrast to Fe and Ti-rich low-temperature experimental melts obtained in MORB systems at ~950 °C. The ~1,500-m-long drilled gabbroic section of ODP Hole 735B (Legs 118 and 176) at the Southwest Indian Ridge contains numerous small plagiogranitic veins often associated with zones which are characterized by high-temperature shearing. The compositions of the experimental melts obtained at low temperatures match those of the natural plagiogranitic veins, while the compositions of the crystals of low-temperature runs correspond to those of minerals from high-temperature microscopic veins occurring in the gabbroic section of the Hole 735B. This suggests that the observed plagiogranitic veins are products of a partial melting process triggered by a water-rich fluid phase. If the temperature estimations for hightemperature shear zones are correct (up to 1,000 °C), and a water-rich fluid phase is present, the formation of plagiogranites by partial melting of gabbros is probably a widespread phenomenon in the genesis of the ocean crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Site 1117, drilled during Leg 180 of the Ocean Drilling Program in the Woodlark Basin, we cored a fault zone and recovered fault gouge, mylonitized and brecciated gabbros, and undeformed gabbro. We measured the anisotropy of magnetic susceptibility for the rock samples. The susceptibilities of the fault gouge samples were lower than those of the undeformed gabbro, and those of deformed gabbros were lowest. The anisotropy degrees of the fault gouge samples were higher than those of the deformed and undeformed gabbros. Oblate magnetic fabrics were dominant in the samples from the fault zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents sulfide mineral occurrence, abundance, and composition in samples from hydrothermally altered peridotite and gabbro recovered during Ocean Drilling Program (ODP) Leg 209 from south of the 15°20'N Fracture Zone on the Mid-Atlantic Ridge at Site 1268. Most of the sulfide minerals occur in veins and halos around veins in serpentinized peridotite. The only sulfide phases reported that occur in proximity to gabbro are those associated with a mafic intrusion into serpentinized peridotite. Sulfide mineral species change predictably downsection but are perturbed coincident with a breccia interpreted to be generated by intrusion of a gabbroic magma. The general downhole trend suggests sulfide mineral precipitation in conditions with decreasing sulfur and oxygen fugacity. Sulfide minerals that indicate precipitation at relatively higher sulfur and oxygen fugacity occur in the central core of the intrusion breccia. Sphalerite makes a fleeting appearance in the sulfide mineral assemblage in samples from the lower part of the intrusion breccia. Strongly contrasting pyrite compositions suggest at least two episodes of pyrite precipitation, but there is no clear morphological distinction between phases. Heazelwoodite, tentatively identified in shipboard examinations, could not be confirmed in this study.