959 resultados para GUICHEN BAY
Resumo:
Ichthyoplankton surveys in the Potomac River and Upper Chesapeake Bay were carried out in 1989 to estimate striped bass egg productions, age specific spawning biomasses of adult females, cohort-specific larval growth and mortality rates, and hatch dates of 8.0 mm larvae survivors. Possible consequences to recruitment of environmental factors were examined in 1989 and for data collected in 1987-1988. The temporal and spatial occurrences and distributions of eggs and larvae In both spawning areas are described and discussed in relation to environmental factors (temperature, rainfall, river discharge, pH, conductivity, zooplankton abundances) (PDF contains 319 pages)
Resumo:
A multi-disciplinary investigation was conducted in southern Biscayne Bay and Card Sound from 1968 to 1973. The purpose of the investigation was to conduct an integrated study of the ecology of southern Biscayne Bay with special emphasis on the effects of the heated effluent from the Turkey Point fossil fuel power plant, and to predict the impact of additional effluent from the planned conversion of the plant to nuclear fuel. The results of this investigation have been discussed in numerous publications. This report contains the unpublished biology data that resulted from the investigation. (PDF contains 44 pages)
Resumo:
Fish were collected weekly in Biscayne Bay using a monofilament gill net set from a small skiff during 20-30 minute intervals. Although weekly sampling took place for 2.5 years, only the data from samples collected from June 1976 to June 1977 were used in this document. Abnormal external conditions of fins and body were observed on each fish and recorded. Fish were returned immediately to their habitats. Fish collected in the time period for this study numbered 3,765 and included 32 species. Of these, 16 species, totaling 3,556 fish, were caught in sufficient numbers (20 or more) to warrant data analysis. Only 3 of the 16 species could be considered relatively unafflicted: Aetobatus narinari (spotted eagle ray), Diodon hystrix (porcupinefish), and Selene vomer (lookdown). More than 80% of the examined specimens of these three species were unaffected. Less than 20% of the specimens of Diapterus plumieri (striped mojarra), Micropogonias undulatus (Atlantic croaker), and Pogonias cromis (black drum) displayed normal conditions. The three most afflicted species were Diapterus plumieri, striped mojarra; Micropogonias undulatus, Atlantic croaker; and Pogonias cromis, black drum. Only 7, 3, and 7% respectively showed no external evidence of disease. Data described in this document were originally tabulated in the mid-1970s, remained unpublished, and are no longer available. This document was based on archived unpublished text, a data summary table, and figures. Most of the text and cited references were the ones used in the original manuscript and no attempt was made to update them. (PDF contains 44 pages)
Resumo:
Industrial effluents in the lower Patapsco area, which constitutes the navigable portion of the river and includes Baltimore Harbor, are many and include waste acid, distillery waters, tannery wastes and copper as (ferrous sulphate) from pigment and steel industries. (PDF contains 22 pages (2 on 1)
Resumo:
From July 1965 to June 1964 the Natural Resources Institute's Research Vessel ORION took 16 minute tows with a forty (40) foot otter trawl net at 38 selected locations in Chesapeake Bay from the south of the Potomac River to Turkey Point at the head of the Bay and including some tributaries. Shallow and deep hauls were taken at most stations with depths ranging from 5 to 140 feet. A schematic summary of the 54 different species caught was compared with "Fishes of the Chesapeake Bay" by S. F. Hildebrand and W. C. Schroeder. Sixteen species including five not contained in the above references were selected for discussion. (PDF contains 21 pages)
Resumo:
Monthly population size of bait shrimp in the Bay was estimated from December 1984 to July 1985. Growth rates for male and female P. duorarum showed that pink shrimp exhibit a mean residence time in the nursery area (Biscayne Bay) of approximately 21 weeks. Monthly mortality rates were determined for each sex of pink shrimp. It was estimated that 23% and 26% of the male and female monthly population size, respectively, was absorbed by both the fishery and ecosystem monthly. Monthly proportion of the standing stock expected to die exclusively through fishing was 6.5% and 6.0% for males and females respectively. Estimates of emigration rates showed that approximately 4.0% of the population was lost from the Bay system each month. This surplus production was about 50% of the average monthly catch by the fleet. Fishing mortality represents only 8 - 9% of the losses to the shrimp population. The biggest source of loss is emigration, suggesting that most shrimp beyond the size at recruitment (to the fishery) are not utilized for food while in the Bay. Thus, it appears that the direct impact of the fishery on the bait shrimp population is relatively small. (PDF contains 46 pages)
Resumo:
The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)
Resumo:
The three areas in Rookery Bay, near Marco Island and Fakahatchee Bay were sampled from July 1971 through July 1972, and 1,006,640 individual animals were collected, of which the majority (55%) came from the Marco area. The large disparity between the catches at Marco and the remaining study areas was due mainly to the appearance of high numbers of species of polychaetes and echinoderms that were of very minor importance or absent from the catches in Rookery Bay and Fakahatchee Bay. When only the major classes of animals in the catch are considered (i.e., crustaceans, fish and mollusks) the total counts for Fakahatchee (298,830) and Marco (275,075) are quite comparable but both exceed Rookery Bay (119,388) by a considerable margin. The effects of the red tide outbreak in the summer of 1971 were apparently restricted to the Rookery Bay Sanctuary and may account for some of the observed differences. For the purposes of making controlled comparisons between the study areas, three common habitats were selected in each area so that a mud bottom habitat, a sand-shell bottom habitat and a vegetated bottom habitat were located in each of the study areas. Total catches by habitat types for crustaceans, fish and mollusks and certain of the more abundant species show clearly the overwhelming importance of the vegetated bottom as a habitat for animals. By habitat the vegetated areas had the most "indicator species" with five, the mud habitat was next with three and the sand-shell habitat third with two. Thus the vegetated habitat would be the best choice if a single habitat were to be used to detect environmental changes between study areas. (PDF contains 137 pages)
Resumo:
The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)
Resumo:
This report outlines the potential impacts of coastal protection structures on the resources of the Monterey Bay National Marine Sanctuary. At least 15 miles of the Sanctuary’s 300-mile shoreline are currently armored with seawalls and riprap revetments. Most of these coastal protection structures are placed above the mean high tide line, the official boundary of the Sanctuary, yet some influences of armoring impinge on the marine realm and on recreational use. In addition, continued sea level rise and accompanying coastal retreat will force many of these structures below the high tide line over time. The Monterey Bay National Marine Sanctuary staff has recognized the significance of coastal armoring, identifying it as a critical issue in the Coastal Armoring Action Plan of the draft Joint Management Plan. This summary is intended to provide general background information for Sanctuary policies on coastal armoring. The impacts discussed include: aesthetic depreciation, beach loss due to placement, access restriction, loss of sand supply from eroding cliffs, passive erosion, and active erosion. In addition, the potential biological impacts are explored. Finally, an appraisal of how differing armor types compare in relation to impacts, expense and engineering is presented. While the literature cited in this report focus predominantly on the California coast, the framework for this discussion could have implications for other actively eroding coastlines. (PDF contains 26 pages.)
Resumo:
At one time Maryland produced more oysters annually than the rest of the world combined, including all species used for food. This document shows the decline in production to one sixth of the 1884 yield in 1929-1930. Observations over the course of the last decade have indicated two major factors responsible for the decline in oyster production. Reduction of brood stock stands first, while failing to provide clutch (shells) for the setting purposes has been a close second. (PDF contains 29 pages)
Resumo:
This report reviews marine zoning in the Monterey Bay National Marine Sanctuary (MBNMS). The 72 zoned areas in the MBNMS are of 13 different zone types. Each marine zone type has associated regulations that restrict or promote specific activities. For example, recreational activities such as boating, fishing, tidepooling, snorkeling, and SCUBA diving are limited in some zones. Scientific research is allowed at all sites, with appropriate permits, and is specifically promoted in a few sites. In addition, motorized personal watercraft use, dredge material disposal, large vessel traffic, jade collection, and aircraft overflight are allowed only in specific zones. The effectiveness of the marine zoning in the MBNMS is difficult to determine for two reasons. Firstly, many of the zones lack a clearly stated purpose or have confusing regulations. Secondly, the majority of the zones have not been evaluated formally by the managing agencies. Of the zones that have been evaluated, such as Dredge Material Disposal zones, Big Creek MRPA Ecological Reserve, and Pt. Lobos State/Ecological Reserve, the majority appear to be achieving their mandated purpose to some extent. Many of the zones in the MBNMS fall under the title "marine reserve." Marine reserves have recently received significant attention internationally, nationally, and in California due to their potential for: improving the status of exploited species; protecting marine habitats and ecosystems from degradation; facilitating scientific research and fisheries management; and increasing ecotourism. However, reserves must be well designed and managed to reach this potential. A well designed and managed reserve will have clearly defined goals, scientifically-based design, proper enforcement of regulations, rigorous evaluation of the reserve's effectiveness, and adaptive management. Based on these criteria, the majority of the marine reserves in California are not well designed or managed. However, the State of California has recognized this problem and is in the process of re-evaluating the California system of marine managed areas. (PDF contains 137 pages.)
Resumo:
This compendium presents information on the life history, diet, and abundance and distribution of 46 of the more abundant juvenile and small resident fish species, and data on three species of seagrasses in Florida Bay, Everglades National Park. Abundance and distribution of fish data were derived from three sampling schemes: (1) an otter trawl in basins (1984–1985, 1994–2001), (2) a surface trawl in basins (1984–1985), and (3) a surface trawl in channels (1984–1985). Results from surface trawling only included pelagic species. Collections made with an otter trawl in basins on a bi-monthly basis were emphasized. Nonparametric statistics were used to test spatial and temporal differences in the abundance of species and seagrasses. Fish species accounts were presented in four sections – Life history, Diet, Abundance and distribution, and Length-frequency distributions. Although Florida Bay is a subtropical estuary, the majority of fish species (76%) had warm-temperate affinities; i.e., only 24% were solely tropical species. The five most abundant species collected, in descending order, by (1) otter trawl in basins were: Eucinostomus gula, Lucania parva, Anchoa mitchilli, Lagodon rhomboides, and Syngnathus scovelli; (2) surface trawl in basins were: Hyporhamphus unifasciatus, Strongylura notata, Chriodorus atherinoides, Anchoa hepsetus, and Atherinomorus stipes; (3) surface trawl in channels were: Hypoatherina harringtonensis, A. stipes, A. mitchelli, H. unifasciatus, and C. atherinoides. (PDF file contains 219 pages.)
Resumo:
This case study describes the present status and trends, and provides recommendations for the improvement of aquatic resources management within Hon Mun Marine Protected Area (MPA), Nha Trang Bay, Khanh Hoa Province, Vietnam. The case study also evaluates options for improving the livelihoods of local villagers through the development of ecologically sustainable aquaculture and fisheries, which include diversification following careful selection and trial of appropriate culture species, and application of “best practice” culture methods. (Pdf contains 43 pages).