208 resultados para GTPases
Resumo:
The ability of integrins to mediate cell attachment to extracellular matrices and to blood proteins is regulated from inside the cell. Increased ligand-binding activity of integrins is critical for platelet aggregation upon blood clotting and for leukocyte extravasation to inflamed tissues. Decreased adhesion is thought to promote tumor cell invasion. R-Ras, a small intracellular GTPase, regulates the binding of integrins to their ligands outside the cell. Here we show that the Eph receptor tyrosine kinase, EphB2, can control integrin activity through R-Ras. Cells in which EphB2 is activated become poorly adherent to substrates coated with integrin ligands, and a tyrosine residue in the R-Ras effector domain is phosphorylated. The R-Ras phosphorylation and loss of cell adhesion are causally related, because forced expression of an R-Ras variant resistant to phosphorylation at the critical site made cells unresponsive to the anti-adhesive effect of EphB2. This is an unusual regulatory pathway among the small GTPases. Reduced adhesiveness induced through the Eph/R-Ras pathway may explain the repulsive effect of the Eph receptors in axonal pathfinding and may facilitate tumor cell invasion and angiogenesis.
Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization
Resumo:
The small GTPases Cdc42 and Rac regulate a variety of biological processes, including actin polymerization, cell proliferation, and JNK/mitogen-activated protein kinase activation, conceivably via distinct effectors. Whereas the effector for mitogen-activated protein kinase activation appears to be p65PAK, the identity of effector(s) for actin polymerization remains unclear. We have found a putative effector for Drosophila Cdc42, Genghis Khan (Gek), which binds to Dcdc42 in a GTP-dependent and effector domain-dependent manner. Gek contains a predicted serine/threonine kinase catalytic domain that is 63% identical to human myotonic dystrophy protein kinase and has protein kinase activities. It also possesses a large coiled-coil domain, a putative phorbol ester binding domain, a pleckstrin homology domain, and a Cdc42 binding consensus sequence that is required for its binding to Dcdc42. To study the in vivo function of gek, we generated mutations in the Drosophila gek locus. Egg chambers homozygous for gek mutations exhibit abnormal accumulation of F-actin and are defective in producing fertilized eggs. These phenotypes can be rescued by a wild-type gek transgene. Our results suggest that this multidomain protein kinase is an effector for the regulation of actin polymerization by Cdc42.
Resumo:
Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP⋅Rad was also reconverted to GTP⋅Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.
Resumo:
Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.
Resumo:
Rab5-dependent endosome fusion is sensitive to the phosphoinositide 3-kinase inhibitor, wortmannin. It has been proposed that phosphoinositide 3-kinase activity may be required for activation of rab5 by influencing its nucleotide cycle such as to promote its active GTP state. In this report we demonstrate that endosome fusion remains sensitive to wortmannin despite preloading of endosomes with stimulatory levels of a GTPase-defective mutant rab5Q79L or of a xanthosine triphosphate-binding mutant, rab5D136N, in the presence of the nonhydrolysable analogue XTPγS. These results suggest that activation of rab5 cannot be the principal function of the wortmannin-sensitive factor on the endosome fusion pathway. This result is extrapolated to all GTPases by demonstrating that endosome fusion remains wortmannin sensitive despite prior incubation with the nonhydrolysable nucleotide analogue GTPγS. Consistent with these results, direct measurement of clathrin-coated vesicle-stimulated nucleotide dissociation from exogenous rab5 was insensitive to the presence of wortmannin. A large excess of rab5Q79L, beyond levels required for maximal stimulation of the fusion assay, afforded protection against wortmannin inhibition, and partial protection was also observed with an excess of wild-type rab5 independent of GTPγS.
Induction of Exocytosis from Permeabilized Mast Cells by the Guanosine Triphosphatases Rac and Cdc42
Resumo:
We applied recombinant forms of the Rho-related small guanosine triphosphatases (GTPases) Rac2 and Cdc42/G25K to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and guanosine triphosphate (GTP)γS over about 20–30 min. This loss of sensitivity is likely to be due to loss of key regulatory proteins that are normally tethered at intracellular locations. Exogenous proteins that retard this loss of sensitivity to stimulation may be similar, if not identical, to those secretory regulators that are lost. Recombinant Rac and Cdc42/G25K, preactivated by binding GTPγS, retard the loss of sensitivity (run-down) and, more importantly, enable secretion to be stimulated by Ca2+ alone. Investigation of the concentration dependence of each of these two GTPases applied individually to the permeabilized cells, and of Cdc42/G25K applied in the presence of an optimal concentration of Rac2, has provided evidence for a shared effector pathway and also a second effector pathway activated by Cdc42/G25K alone. Dominant negative mutant (N17) forms of Rac2 and Cdc42/G25K inhibit secretion induced by Ca2+ and GTPγS. Our data suggest that Rac2 and Cdc42 should be considered as candidates for GE, GTPases that mediate exocytosis in cells of hematopoeitic origin.
Resumo:
RhoG is a member of the Rho family of GTPases that shares 72% and 62% sequence identity with Rac1 and Cdc42Hs, respectively. We have expressed mutant RhoG proteins fused to the green fluorescent protein and analyzed subsequent changes in cell surface morphology and modifications of cytoskeletal structures. In rat and mouse fibroblasts, green fluorescent protein chimera and endogenous RhoG proteins colocalize according to a tubular cytoplasmic pattern, with perinuclear accumulation and local concentration at the plasma membrane. Constitutively active RhoG proteins produce morphological and cytoskeletal changes similar to those elicited by a simultaneous activation of Rac1 and Cdc42Hs, i.e., the formation of ruffles, lamellipodia, filopodia, and partial loss of stress fibers. In addition, RhoG and Cdc42Hs promote the formation of microvilli at the cell apical membrane. RhoG-dependent events are not mediated through a direct interaction with Rac1 and Cdc42Hs targets such as PAK-1, POR1, or WASP proteins but require endogenous Rac1 and Cdc42Hs activities: coexpression of a dominant negative Rac1 impairs membrane ruffling and lamellipodia but not filopodia or microvilli formation. Conversely, coexpression of a dominant negative Cdc42Hs only blocks microvilli and filopodia, but not membrane ruffling and lamellipodia. Microtubule depolymerization upon nocodazole treatment leads to a loss of RhoG protein from the cell periphery associated with a reversal of the RhoG phenotype, whereas PDGF or bradykinin stimulation of nocodazole-treated cells could still promote Rac1- and Cdc42Hs-dependent cytoskeletal reorganization. Therefore, our data demonstrate that RhoG controls a pathway that requires the microtubule network and activates Rac1 and Cdc42Hs independently of their growth factor signaling pathways.
Resumo:
Adhesion to ECM is required for many cell functions including cytoskeletal organization, migration, and proliferation. We observed that when cells first adhere to extracellular matrix, they spread rapidly by extending filopodia-like projections and lamellipodia. These structures are similar to the Rac- and Cdc42-dependent structures observed in growth factor-stimulated cells. We therefore investigated the involvement of Rac and Cdc42 in adhesion and spreading on the ECM protein fibronectin. We found that integrin-dependent adhesion led to the rapid activation of p21-activated kinase, a downstream effector of Cdc42 and Rac, suggesting that integrins activate at least one of these GTPases. Dominant negative mutants of Rac and Cdc42 inhibit cell spreading in such a way as to suggest that integrins activate Cdc42, which leads to the subsequent activation of Rac; both GTPases then contribute to cell spreading. These results demonstrate that initial integrin-dependent activation of Rac and Cdc42 mediates cell spreading.
Resumo:
Dynamins are 100-kDa GTPases that are essential for clathrin-coated vesicle formation during receptor-mediated endocytosis. To date, three different dynamin genes have been identified, with each gene expressing at least four different alternatively spliced forms. Currently, it is unclear whether these different dynamin gene products perform distinct or redundant cellular functions. Therefore, the focus of this study was to identify additional spliced variants of dynamin from rat tissues and to define the distribution of the dynamin family members in a cultured rat epithelial cell model (Clone 9 cells). After long-distance reverse transcription (RT)-PCR of mRNA from different rat tissues, the full-length cDNAs encoding the different dynamin isoforms were sequenced and revealed four additional spliced variants for dynamin I and nine for dynamin III. Thus, in rat tissues there are a total of at least 25 different mRNAs produced from the three dynamin genes. Subsequently, we generated stably transfected Clone 9 cells expressing full-length cDNAs of six different spliced forms tagged with green fluorescent protein. Confocal or fluorescence microscopy of these transfected cells revealed that many of the dynamin proteins associate with distinct membrane compartments, which include clathrin-coated pits at the plasma membrane and the Golgi apparatus, and several undefined vesicle populations. These results indicate that the dynamin family is more extensive than was originally predicted and suggest that the different dynamin proteins are localized to distinct cytoplasmic or membrane compartments.
Resumo:
Purified Golgi membranes were mixed with cytosol and microtubules (MTs) and observed by video enhanced light microscopy. Initially, the membranes appeared as vesicles that moved along MTs. As time progressed, vesicles formed aggregates from which membrane tubules emerged, traveled along MTs, and eventually generated extensive reticular networks. Membrane motility required ATP, occurred mainly toward MT plus ends, and was inhibited almost completely by the H1 monoclonal antibody to kinesin heavy chain, 5′-adenylylimidodiphosphate, and 100 μM but not 20 μM vanadate. Motility was also blocked by GTPγS or AlF4− but was insensitive to AlCl3, NaF, staurosporin, or okadaic acid. The targets for GTPγS and AlF4− were evidently of cytosolic origin, did not include kinesin or MTs, and were insensitive to several probes for trimeric G proteins. Transport of Golgi membranes along MTs mediated by a kinesin has thus been reconstituted in vitro. The motility is regulated by one or more cytosolic GTPases but not by protein kinases or phosphatases that are inhibited by staurosporin or okadaic acid, respectively. The pertinent GTPases are likely to be small G proteins or possibly dynamin. The in vitro motility may correspond to Golgi-to-ER or Golgi-to-cell surface transport in vivo.
Resumo:
Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7 and GYP1, nor is it influenced by mutations in SEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.
Resumo:
Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src–induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures.
Resumo:
Rab5 is a regulatory GTPase of vesicle docking and fusion that is involved in receptor-mediated endocytosis and pinocytosis. Introduction of active Rab5 in cells stimulates the rate of endocytosis and vesicle fusion, resulting in the formation of large endocytic vesicles, whereas dominant negative Rab5 inhibits vesicle fusion. Here we show that introduction of active Rab5 in fibroblasts also induced reorganization of the actin cytoskeleton but not of microtubule filaments, resulting in prominent lamellipodia formation. The Rab5-induced lamellipodia formation did not require activation of PI3-K or the GTPases Ras, Rac, Cdc42, or Rho, which are all strongly implicated in cytoskeletal reorganization. Furthermore, lamellipodia formation by insulin, Ras, or Rac was not affected by expression of dominant negative Rab5. In addition, cells expressing active Rab5 displayed a dramatic stimulation of cell migration, with the lamellipodia serving as the leading edge. Both lamellipodia formation and cell migration were dependent on actin polymerization but not on microtubules. These results demonstrate that Rab5 induces lamellipodia formation and cell migration and that the Rab5-induced lamellipodia formation occurs by a novel mechanism independent of, and distinct from, PI3-K, Ras, or Rho-family GTPases. Thus, Rab5 can control not only endocytosis but also actin cytoskeleton reorganization and cell migration, which provides strong support for an intricate relationship between these processes.
Resumo:
ARNO is a member of a family of guanine-nucleotide exchange factors with specificity for the ADP-ribosylation factor (ARF) GTPases. ARNO possesses a central catalytic domain with homology to yeast Sec7p and an adjacent C-terminal pleckstrin homology (PH) domain. We have previously shown that ARNO localizes to the plasma membrane in vivo and efficiently catalyzes ARF6 nucleotide exchange in vitro. In addition to a role in endocytosis, ARF6 has also been shown to regulate assembly of the actin cytoskeleton. To determine whether ARNO is an upstream regulator of ARF6 in vivo, we examined the distribution of actin in HeLa cells overexpressing ARNO. We found that, while expression of ARNO leads to disassembly of actin stress fibers, it does not result in obvious changes in cell morphology. However, treatment of ARNO transfectants with the PKC agonist phorbol 12-myristate 13-acetate results in the dramatic redistribution of ARNO, ARF6, and actin into membrane protrusions resembling lamellipodia. This process requires ARF activation, as actin rearrangement does not occur in cells expressing a catalytically inactive ARNO mutant. PKC phosphorylates ARNO at a site immediately C-terminal to its PH domain. However, mutation of this site had no effect on the ability of ARNO to regulate actin rearrangement, suggesting that phosphorylation of ARNO by PKC does not positively regulate its activity. Finally, we demonstrate that an ARNO mutant lacking the C-terminal PH domain no longer mediates cytoskeletal reorganization, indicating a role for this domain in appropriate membrane localization. Taken together, these data suggest that ARNO represents an important link between cell surface receptors, ARF6, and the actin cytoskeleton.
Resumo:
Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1Δ, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11°C and 37°C. rom2Δ cells exhibit morphological defects. At permissive temperatures, rom2Δ cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1Δ and kar3Δ strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2Δ strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.