898 resultados para GPS positioning
Resumo:
GPS multipath reflectometry (GPS-MR) is a technique that uses geodetic quality GPS receivers to estimate snow depth. The accuracy and precision of GPS-MR retrievals are evaluated at three different sites: grasslands, alpine, and forested. The assessment yields a correlation of 0.98 and an rms error of 6-8 cm for observed snow depths of up to 2.5 m. GPS-MR underestimates in situ snow depth by 10%-15% at these three sites, although the validation methods do not measure the same footprint as GPS-MR.
Resumo:
Internet is fully inserted in contemporary society, specially in relation to entertainment services and trading. Its reach has transposed the traditional desktop computer models coming to mobile devices like cell phones and GPS receivers. Likewise, the scientific community takes its benefits, both for publication of studies and for communication between clusters processing information, such as at LHC, located in Switzerland. Concerning geodetic positioning, researches in the area present the concept of Virtual Reference Stations - VRS, in which is necessary a communication way between the real reference stations and a central system as well as between central system and a service requester. In this work, we analyze the current solutions for generation of VRS with regard to data delivery for the service requester and present a solution based on Web Services as an alternative to the model being developed by Spatial Geodesy Study Group – GEGE/FCT/UNESP. Comparing solutions, it was verified the potential of Web Services to aid in researches of geodetic positioning using VRS. Using such technology, it is obtained interoperability, providing greater flexibility to develop client applications, both development carried out by researchers of the university or by any person or enterprise wishing to use the service
Resumo:
The objective of this project was to monitor the satellites of the Global Positioning System (GPS) from a fixed point on Earth and to verify the rate of recurrence respect to their rotation and displacement. A topographic GPS signal receiver connected to a personal computer was used to recorded, for five days, the displacement of the satellites. This work was based on the fact that many literature references state that satellites complete one orbit around the Earth every 12 hours, then, it is assumed that the satellite would be seen twice in a day from the same fixed point on Earth.Although, this does not occur, as thise time interval correspond to 12 hours sidereal time and not solar time. In addition, this study was carried out in order toconfirm and update the information related to the number of satellites in operation today, found to be 31. In that sense, some references concerning the space segment of this system were defined in details.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Estimation of tropospheric gradients in GNSS data processing is a well-known technique to improve positioning (e.g. Bar-Sever et al., 1998; Chen and Herring, 1997). More recently, several authors also focused on the estimation of such parameters for meteorological studies and demonstrated their potential benefits (e.g. Champollion et al., 2004). Today, they are routinely estimated by several global and regional GNSS analysis centres but they are still not yet used for operational meteorology.This paper discusses the physical meaning of tropospheric gradients estimated from GPS observations recorded in 2011 by 13 permanent stations located in Corsica Island (a French Island in the western part of Italy). Corsica Island is a particularly interesting location for such study as it presents a significant environmental contrast between the continent and the sea, as well as a steep topography.Therefore, we estimated Zenith Total Delay (ZTD) and tropospheric gradients using two software: GAMIT/GLOBK (GAMIT version 10.5) and GIPSY-OASIS II version 6.1. Our results are then compared to radiosonde observations and to the IGS final troposphere products. For all stations we found a good agreement between the ZWD estimated by the two software (the mean of the ZWD differences is 1 mm with a standard deviation of 6 mm) but the tropospheric gradients are in less good agreement (the mean of the gradient differences is 0.1 mm with a standard deviation of 0.7 mm), despite the differences in the processing strategy (double-differences for GAMIT/GLOBK versus zero-difference for GIPSY-OASIS).We also observe that gradient amplitudes are correlated with the seasonal behaviour of the humidity. Like ZWD estimates, they are larger in summer than in winter. Their directions are stable over the time but not correlated with the IWV anomaly observed by ERA-Interim. Tropospheric gradients observed at many sites always point to inland throughout the year. These preferred directions are almost opposite to the largest slope of the local topography as derived from the world Digital Elevation Model ASTER GDEM v2. These first results give a physical meaning to gradients but the origin of such directions need further investigations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aiming to evaluate the methodologies of surveys related with the specifications of Geo-referencing Rural Parcels in Brazil, established by INCRA (National Institute of Colonization and Agrarian Reform), in attendance to the Law 10.267/01, and considering aspects of precision and accuracy, a test area was set up in the Assentamento Florestan Fernandes, in the county of Presidente Bernardes, SP. This area was subdivided in three sub-areas in order to simulate the existence of three contiguous rural parcels. The first stage of work consisted in the implantation and determination of the control points coordinates in their respective areas. These control points were determined by the process of direct transport, using dual frequency (L1/L2) GPS receivers and through the process of traverse with baselines of up to 20 km, using single frequency receivers (L1). The coordinates of the points of the perimeter of the three sub-areas were determined using single frequency GPS receivers, from two survey methods, both using static relative positioning. The first one, so called traverse, each point that delimits the property was occupied successively, starting from the control point and closing at another. In other, denominated double irradiation, each point of the property was irradiated from two control points. These procedures were accomplished with the intention to define and to implement a mistake control strategy, to realize redundancy measurements and to use an adjustment method correctly, to obtain trustworthily values in the patterns demanded in each kind of survey. With the data collected and processed some analyses could be accomplished from the discrepancies between the coordinates obtained by different methodologies. The results show that this test area may be used to validate other methodologies and equipments. The results were satisfactory and attended the specifications of Geo-referencing Rural Parcel.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.
Resumo:
Da ormai sette anni la stazione permanente GPS di Baia Terranova acquisisce dati giornalieri che opportunamente elaborati consentono di contribuire alla comprensione della dinamica antartica e a verificare se modelli globali di natura geofisica siano aderenti all’area di interesse della stazione GPS permanente. Da ricerche bibliografiche condotte si è dedotto che una serie GPS presenta molteplici possibili perturbazioni principalmente dovute a errori nella modellizzazione di alcuni dati ancillari necessari al processamento. Non solo, da alcune analisi svolte, è emerso come tali serie temporali ricavate da rilievi geodetici, siano afflitte da differenti tipologie di rumore che possono alterare, se non opportunamente considerate, i parametri di interesse per le interpretazioni geofisiche del dato. Il lavoro di tesi consiste nel comprendere in che misura tali errori, possano incidere sui parametri dinamici che caratterizzano il moto della stazione permanente, facendo particolare riferimento alla velocità del punto sul quale la stazione è installata e sugli eventuali segnali periodici che possono essere individuati.
Resumo:
An extensive sample (2%) of private vehicles in Italy are equipped with a GPS device that periodically measures their position and dynamical state for insurance purposes. Having access to this type of data allows to develop theoretical and practical applications of great interest: the real-time reconstruction of traffic state in a certain region, the development of accurate models of vehicle dynamics, the study of the cognitive dynamics of drivers. In order for these applications to be possible, we first need to develop the ability to reconstruct the paths taken by vehicles on the road network from the raw GPS data. In fact, these data are affected by positioning errors and they are often very distanced from each other (~2 Km). For these reasons, the task of path identification is not straightforward. This thesis describes the approach we followed to reliably identify vehicle paths from this kind of low-sampling data. The problem of matching data with roads is solved with a bayesian approach of maximum likelihood. While the identification of the path taken between two consecutive GPS measures is performed with a specifically developed optimal routing algorithm, based on A* algorithm. The procedure was applied on an off-line urban data sample and proved to be robust and accurate. Future developments will extend the procedure to real-time execution and nation-wide coverage.
Resumo:
Il Global Positioning System (GPS) e l’Interferometric Synthetic Aperture Radar (InSAR) sono due tecniche osservative di grande importanza che utilizzano segnali nel campo delle microonde. Questa tesi intende contribuire a sviluppare una base di confronto tra i risultati derivati da queste due tecniche osservative. Una parte del lavoro riguarda uno studio delle deformazioni del suolo, in particolare, la stima dei movimenti verticali e di quelli che riguardano la componente Est della posizione delle stazioni. Un secondo ambito di ricerca è invece focalizzato alla determinazione del ritardo introdotto, nella propagazione dei segnali GPS e SAR, dal loro passaggio in atmosfera. In particolare, si è studiato l’effetto della componente umida della troposfera.
Resumo:
Inexpensive, commercial available off-the-shelf (COTS) Global Positioning Receivers (GPS) have typical accuracy of ±3 meters when augmented by the Wide Areas Augmentation System (WAAS). There exist applications that require position measurements between two moving targets. The focus of this work is to explore the viability of using clusters of COTS GPS receivers for relative position measurements to improve their accuracy. An experimental study was performed using two clusters, each with five GPS receivers, with a fixed distance of 4.5 m between the clusters. Although the relative position was fixed, the entire system of ten GPS receivers was on a mobile platform. Data was recorded while moving the system over a rectangular track with a perimeter distance of 7564 m. The data was post processed and yielded approximately 1 meter accuracy for the relative position vector between the two clusters.