171 resultados para GPCR
Resumo:
The receptor for CGRP (calcitonin gene-related peptide) is a heterodimer between a GPCR (G-protein-coupled receptor), CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). Models have been produced of RAMP1 and CLR. It is likely that the C-terminus of CGRP interacts with the extracellular N-termini of CLR and RAMP1; the extreme N-terminus of CLR is particularly important and may interact directly with CGRP and also with RAMP1. The N-terminus of CGRP interacts with the TM (transmembrane) portion of the receptor; the second ECL (extracellular loop) is especially important. Receptor activation is likely to involve the relative movements of TMs 3 and 6 to create a G-protein-binding pocket, as in Family A GPCRs. Pro321 in TM6 appears to act as a pivot. At the base of TMs 2 and 3, Arg151, His155 and Glu211 may form a loose equivalent of the Family A DRY (Asp-Arg-Tyr) motif. Although the details of this proposed activation mechanism clearly do not apply to all Family B GPCRs, the broad outlines may be conserved. ©The Authors.
Resumo:
The CGRP1 receptor exists as a heterodimeric complex between a single-pass transmembrane accessory protein (RAMP1) and a family B G-protein-coupled receptor (GPCR) called the calcitonin receptor-like receptor (CLR). This study investigated the structural motifs found in the intracellular loops (ICLs) of this receptor. Molecular modeling was used to predict active and inactive conformations of each ICL. Conserved residues were altered to alanine by site-directed mutagenesis. cAMP accumulation, cell-surface expression, agonist affinity, and CGRP-stimulated receptor internalization were characterized. Within ICL1, L147 and particularly R151 were important for coupling to Gs. R151 may interact directly with the G-protein, accessing it following conformational changes involving ICL2 and ICL3. At the proximal end of ICL3, I290 and L294, probably lying on the same face of an α helix, formed a G-protein coupling motif. The largest effects on coupling were observed with I290A; additionally, it reduced CGRP affinity and impaired internalization. 1290 may interact with TM6 to stabilize the conformation of ICL3, but it could also interact directly with Gs. R314, at the distal end of ICL3, impaired G-protein coupling and to a lesser extent reduced CGRP affinity; it may stabilize the TM6-ICL3 junction by interacting with the polar headgroups of membrane phospholipids. Y215 and L214 in ICL2 are required for cell-surface expression; they form a microdomain with H216 which has the same function. This study reveals similarities between the activation of CLR and other GPCRs in the role of TM6 and ICL3 but shows that other conserved motifs differ in their function. © 2006 American Chemical Society.
Resumo:
The G-protein coupled receptors--or GPCRs--comprise simultaneously one of the largest and one of the most multi-functional protein families known to modern-day molecular bioscience. From a drug discovery and pharmaceutical industry perspective, the GPCRs constitute one of the most commercially and economically important groups of proteins known. The GPCRs undertake numerous vital metabolic functions and interact with a hugely diverse range of small and large ligands. Many different methodologies have been developed to efficiently and accurately classify the GPCRs. These range from motif-based techniques to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of sequences. We review here the available methodologies for the classification of GPCRs. Part of this work focuses on how we have tried to build the intrinsically hierarchical nature of sequence relations, implicit within the family, into an adaptive approach to classification. Importantly, we also allude to some of the key innate problems in developing an effective approach to classifying the GPCRs: the lack of sequence similarity between the six classes that comprise the GPCR family and the low sequence similarity to other family members evinced by many newly revealed members of the family.
Resumo:
Adrenomedullin (AM) and amylin are involved in angiogenesis/lymphangiogenesis and glucose homeostasis/food intake, respectively. They activate receptor activity-modifying protein (RAMP)/G protein-coupled receptor (GPCR) complexes. RAMP3 with the calcitonin receptor-like receptor (CLR) forms the AM(2) receptor, whereas when paired with the calcitonin receptor AMY(3) receptors are formed. RAMP3 interacts with other GPCRs although the consequences of these interactions are poorly understood. Therefore, variations in the RAMP3 sequence, such as single nucleotide polymorphisms or mutations could be relevant to human health. Variants of RAMP3 have been identified. In particular, analysis of AK222469 (Homo sapiens mRNA for receptor (calcitonin) activity-modifying protein 3 precursor variant) revealed several nucleotide differences, three of which encoded amino acid changes (Cys40Trp, Phe100Ser, Leu147Pro). Trp56Arg RAMP3 is a polymorphic variant of human RAMP3 at a conserved amino acid position. To determine their function we used wild-type (WT) human RAMP3 as a template for introducing amino acid mutations. Mutant or WT RAMP3 function was determined in Cos-7 cells with CLR or the calcitonin receptor (CT((a))). Cys40Trp/Phe100Ser/Leu147Pro RAMP3 was functionally compromised, with reduced AM and amylin potency at the respective AM(2) and AMY(3(a)) receptor complexes. Cys40Trp and Phe100Ser mutations contributed to this phenotype, unlike Leu147Pro. Reduced cell-surface expression of mutant receptor complexes probably explains the functional data. In contrast, Trp56Arg RAMP3 was WT in phenotype. This study provides insight into the role of these residues in RAMP3. The existence of AK222469 in the human population has implications for the function of RAMP3/GPCR complexes, particularly AM and amylin receptors.
Resumo:
The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.
Resumo:
The calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR) are two of the 15 human family B (or Secretin-like) GPCRs. CTR and CLR are of considerable biological interest as their pharmacology is moulded by interactions with receptor activity-modifying proteins. They also have therapeutic relevance for many conditions, such as osteoporosis, diabetes, obesity, lymphatic insufficiency, migraine and cardiovascular disease. In light of recent advances in understanding ligand docking and receptor activation in both the family as a whole and in CLR and CTR specifically, this review reflects how applicable general family B GPCR themes are to these two idiosyncratic receptors. We review the main functional domains of the receptors; the N-terminal extracellular domain, the juxtamembrane domain and ligand interface, the transmembrane domain and the intracellular C-terminal domain. Structural and functional findings from the CLR and CTR along with other family B GPCRs are critically appraised to gain insight into how these domains may function. The ability for CTR and CLR to interact with receptor activity-modifying proteins adds another level of sophistication to these receptor systems but means careful consideration is needed when trying to apply generic GPCR principles. This review encapsulates current thinking in the realm of family B GPCR research by highlighting both conflicting and recurring themes and how such findings relate to two unusual but important receptors, CTR and CLR.
Resumo:
G protein coupled receptors (GPCRs) are highly flexible and dynamic proteins, which are able to interact with diverse ligands, effectors, and regulatory proteins. Site-directed mutagenesis (SDM) is a powerful tool for providing insight into how these proteins actually work, both in its own right and when used in conjunction with information provided by other techniques such as crystallography or molecular modelling. Mutagenesis has been used to identify and characterise a myriad of functionally important residues, motifs and domains within the GPCR architecture, and to identify aspects of similarity and differences between the major families of GPCRs. This chapter presents the necessary information for undertaking informative SDM of these proteins. Whilst this is relevant to protein structure/function studies in -general, specific pitfalls and protocols suited to investigating GPCRs in particular will be highlighted.
Resumo:
Calcitonin gene-related peptide (CGRP) plays a pivotal role in migraine, activating its cognate receptor to initiate intracellular signalling. This atypical receptor comprises a distinct assembly, made up of a G protein-coupled receptor (GPCR), a single transmembrane protein, and an additional protein that is required for Ga(s) coupling. By altering the expression of individual receptor components, it might be possible to adjust cellular sensitivity to CGRP. In recognition of the increasing clinical significance of CGRP receptors, it is timely to review the signalling pathways that might be controlled by this receptor, how the activity of the receptor itself is regulated, and our current understanding of the molecular mechanisms involved in these processes. Like many GPCRs, the CGRP receptor appears to be promiscuous, potentially coupling to several G proteins and intracellular pathways. Their precise composition is likely to be cell type-dependent, and much work is needed to ascertain their physiological significance.
Resumo:
The VPAC(1) receptor belongs to family B of G protein-coupled receptors (GPCR-B) and is activated upon binding of the vasoactive intestinal peptide (VIP). Despite the recent determination of the structure of the N terminus of several members of this receptor family, little is known about the structure of the transmembrane (TM) region and about the molecular mechanisms leading to activation. In the present study, we designed a new structural model of the TM domain and combined it with experimental mutagenesis experiments to investigate the interaction network that governs ligand binding and receptor activation. Our results suggest that this network involves the cluster of residues Arg(188) in TM2, Gln(380) in TM7, and Asn(229) in TM3. This cluster is expected to be altered upon VIP binding, because Arg(188) has been shown previously to interact with Asp(3) of VIP. Several point mutations at positions 188, 229, and 380 were experimentally characterized and were shown to severely affect VIP binding and/or VIP-mediated cAMP production. Double mutants built from reciprocal residue exchanges exhibit strong cooperative or anticooperative effects, thereby indicating the spatial proximity of residues Arg(188), Gln(380), and Asn(229). Because these residues are highly conserved in the GPCR-B family, they can moreover be expected to have a general role in mediating function.
Resumo:
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced aCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced aCGRP binding. These residues form a hydrophobic cluster within an area defined as the "minor groove" of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of aCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on aCGRP binding and cAMP production; they are likely to indirectly influence the binding site for aCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired aCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.
Resumo:
G-protein coupled receptors (GPCRs) are a superfamily of membrane integral proteins responsible for a large number of physiological functions. Approximately 50% of marketed drugs are targeted toward a GPCR. Despite showing a high degree of structural homology, there is a large variance in sequence within the GPCR superfamily which has lead to difficulties in identifying and classifying potential new GPCR proteins. Here the various computational techniques that can be used to characterize a novel GPCR protein are discussed, including both alignment-based and alignment-free approaches. In addition, the application of homology modeling to building the three-dimensional structures of GPCRs is described.
Resumo:
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. CLR is an example of a family B GPCR. Unlike family A GPCRs, little is known about how these receptors are activated by their endogenous ligands. This review considers what is known about the activation of family B GPCRs and then considers how this might be applied to CLR, particularly in light of new knowledge of the crystal structures of family A GPCRs.
Resumo:
GPCRs exhibit a common architecture of seven transmembrane helices (TMs) linked by intracellular loops and extracellular loops (ECLs). Given their peripheral location to the site of G-protein interaction, it might be assumed that ECL segments merely link the important TMs within the helical bundle of the receptor. However, compelling evidence has emerged in recent years revealing a critical role for ECLs in many fundamental aspects of GPCR function, which supported by recent GPCR crystal structures has provided mechanistic insights. This review will present current understanding of the key roles of ECLs in ligand binding, activation and regulation of both family A and family B GPCRs.
Resumo:
Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A-class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg(2.39), His(2.43) and Glu(3.46), which makes a polar lock with T(6.37). These alignments and models provide useful tools for understanding class B GPCR function.
Resumo:
The papers resulting from the recent Biochemical Society Focused Meeting 'G-Protein-Coupled Receptors: from Structural Insights to Functional Mechanisms' held in Prato in September 2012 are introduced in the present overview. A number of future goals for GPCR (G-protein-coupled receptor) research are considered, including the need to develop biophysical and computational methods to explore the full range of GPCR conformations and their dynamics, the need to develop methods to take this into account for drug discovery and the importance of relating observations on isolated receptors or receptors expressed in model systems to receptor function in vivo. © 2013 Biochemical Society.