967 resultados para GERMLINE MUTATION
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
Germline mutations of the PTEN tumor-suppressor gene, on 10q23, cause Cowden syndrome, an inherited hamartoma syndrome with a high risk of breast, thyroid and endometrial carcinomas and, some suggest, melanoma. To date, most studies which strongly implicate PTEN in the etiology of sporadic melanomas have depended on cell lines, short-term tumor cultures and noncultured metastatic melanomas. The only study which reports PTEN protein expression in melanoma focuses on cytoplasmic expression, mainly in metastatic samples. To determine how PTEN contributes to the etiology or the progression of primary cutaneous melanoma, we examined cytoplasmic and nuclear PTEN expression against clinical and pathologic features in a population-based sample of 150 individuals with incident primary cutaneous melanoma. Among 92 evaluable samples, 30 had no or decreased cytoplasmic PTEN protein expression and the remaining 62 had normal PTEN expression. In contrast, 84 tumors had no or decreased nuclear expression and 8 had normal nuclear PTEN expression. None of the clinical features studied, such as Clark's level and Breslow thickness or sun exposure, were associated with cytoplasmic PTEN expressional levels. An association with loss of nuclear PTEN expression was indicated for anatomical site (p = 0.06) and mitotic index (p = 0.02). There was also an association for melanomas to either not express nuclear PTEN or to express p53 alone, rather than both simultaneously (p = 0.02). In contrast with metastatic melanoma, where we have shown previously that almost two-thirds of tumors have some PTEN inactivation, only one-third of primary melanomas had PTEN silencing. This suggests that PTEN inactivation is a late event likely related to melanoma progression rather than initiation. Taken together with our previous observations in thyroid and islet cell tumors, our data suggest that nuclear-cytoplasmic partitioning of PTEN might also play a role in melanoma progression. (C) 2002 Wiley-Liss, Inc.
Resumo:
The incidence of melanoma increases markedly in the second decade of life but almost nothing is known of the causes of melanoma in this age group. We report on the first population-based case-control study of risk factors for melanoma in adolescents (15-19 years). Data were collected through personal interviews with cases, controls and parents. A single examiner conducted full-body nevus counts and blood samples were collected from cases for analysis of the CDKN2A melanoma predisposition gene. A total of 201 (80%) of the 250 adolescents with melanoma diagnosed between 1987 and 1994 and registered with the Queensland Cancer Registry and 205 (79%) of 258 age-, gender- and location-matched controls who were contacted agreed to participate. The strongest risk factor associated with melanoma in adolescents in a multivariate model was the presence of more than 100 nevi 2 mm or more in diameter (odds ratio [OR] = 46.5, 95% confidence interval [Cl] = 11.4-190.8). Other risk factors were red hair (OR = 5.4, 95%Cl = 1.0-28.4); blue eyes (OR = 4.5, 95%Cl = 1.5- 13.6); inability to tan after prolonged sun exposure (OR = 4.7, 95%Cl = 0.9-24.6); heavy facial freckling (OR = 3.2, 95% Cl = 0.9-12.3); and family history of melanoma (OR = 4.0, 95%Cl = 0.8-18.9). Only 2 of 147 cases tested had germline variants or mutations in CDKN2A. There was no association with sunscreen use overall, however, never/rare use of sunscreen at home under the age of 5 years was associated with increased risk (OR = 2.2, 95%Cl = 0.7-7.1). There was no difference between cases and controls in cumulative sun exposure in this high-exposure environment. Factors indicating genetic susceptibility to melanoma, in particular, the propensity to develop nevi and freckles, red hair, blue eyes, inability to tan and a family history of the disease are the primary determinants of melanoma among adolescents in this high solar radiation environment. Lack of association with reported sun exposure is consistent with the high genetic susceptibility in this group. (C) 2002 Wiley-Liss, Inc.
Resumo:
Background: Germline mutations in the CDKN2A gene, which encodes two proteins (p16INK4A and p14ARF), are the most common cause of inherited susceptibility to melanoma. We examined the penetrance of such mutations using data from eight groups from Europe, Australia and the United States that are part of The Melanoma Genetics Consortium Methods: We analyzed 80 families with documented CDKN2A mutations and multiple cases of cutaneous melanoma. We modeled penetrance for melanoma using a logistic regression model incorporating survival analysis. Hypothesis testing was based on likelihood ratio tests. Covariates included gender, alterations in p14APF protein, and population melanoma incidence rates. All statistical tests were two-sided. Results: The 80 analyzed families contained 402 melanoma patients, 320 of whom were tested for mutations and 291 were mutation carriers. We also tested 713 unaffected family members for mutations and 194 were carriers. Overall, CDKN2A mutation penetrance was estimated to be 0.30 (95% confidence interval (CI) = 0.12 to 0.62) by age 50 years and 0.67 (95% CI = 0.31 to 0.96) by age 80 years. Penetrance was not statistically significantly modified by gender or by whether the CDKN2A mutation altered p14ARF protein. However, there was a statistically significant effect of residing in a location with a high population incidence rate of melanoma (P = .003). By age 50 years CDKN2A mutation penetrance reached 0.13 in Europe, 0.50 in the United States, and 0.32 in Australia; by age 80 years it was 0.58 in Europe, 0.76 in the United States, and 0.91 in Australia. Conclusions: This study, which gives the most informed estimates of CDKN2A mutation penetrance available, indicates that the penetrance varies with melanoma population incidence rates. Thus, the same factors that affect population incidence of melanoma may also mediate CDKN2A penetrance.
Resumo:
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.
Resumo:
Background & Aims: Two major mutations are defined within the hemochromatosis gene, HFE. Although the effects of the C282Y mutation have been well characterized, the effects of the H63D mutation remain unclear. We accessed a well-defined population in Busselton, Australia, and determined the frequency of the H63D mutation and its influence on total body iron stores. Methods: Serum transferrin saturation and ferritin levels were correlated with the H63D mutation in 2531 unrelated white subjects who did not possess the C282Y mutation. Results: Sixty-two subjects (2.1%) were homozygous for the H63D mutation, 711 (23.6%) were heterozygous, and 1758 (58.4%) were wild-type for the H63D mutation. Serum transferrin saturation was significantly increased in male and female H63D homozygotes and heterozygotes compared with wild-types. Serum ferritin levels within each gender were not influenced by H63D genotypes. Elevated transferrin saturation greater than or equal to45% was observed in a greater proportion of male H63D carriers than male wild-types. Male H63D homozygotes (9%) and heterozygotes (3%) were more likely to have both elevated transferrin saturation and elevated ferritin greater than or equal to300 ng/mL than male wild-types (0.7%). Homozygosity for H63D was not associated with the development of clinically significant iron overload. Conclusions: Presence of the H63D mutation results in a significant increase in serum transferrin saturation but does hot result in significant iron overload. In the absence of the C282Y mutation, the H63D mutation is not clinically significant.
Resumo:
The amelogenesis imperfectas (Al) area geneticatly heterogeneous group of diseases that result in defective development of tooth enamel. Although X-linked, autosomal. dominant and autosomal. recessive forms of Al have been clinically characterized, only two genes (AMELX and ENAM) have been associated with Al. To date, three enamelin (ENAM) mutations have been identified. These mutations cause phenotypically diverse forms of autosomal. dominant Al. Detailed phenotype-genotype correlations have not been performed for autosomal. dominant Al due to ENAM mutations. We identified a previously unreported kindred segregating for the ENAM mutation, g.8344delG. Light and electron microscopy analyses of unerupted permanent teeth show the enamel is markedly reduced in thickness, Lacks a prismatic structure and has a laminated appearance. Taken together these histological features support the enamelin protein as being critical for the development of a normal. enamel. thickness and that it Likely has a role in regulating c-axis crystallite growth. Because there is growing molecular and phenotypic diversity in the enamelin defects, it is critical to have a nomenclature and numbering system for characterizing these conditions. We present a standardized nomenclature for ENAM mutations that will allow consistent reporting and communication. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Germline variants in the melanocortin 1 receptor gene (MC1R) and the p16 gene (CDKN2A) are associated with an increased risk of cutaneous melanoma. The frequency of these germline variants was examined in a population-based, incident series of 62 ocular melanoma cases and ethnicity-matched population controls. In both cases and controls, 59% of individuals carried at least one MC1R variant and there were no significant differences in the frequency of any of the five most common variants of MC1R. We also found no significant differences between cases and controls in the frequency of any of the four most common variants of CDKN2A, and no melanoma case carried a deleterious germline CDKN2A mutation. Our findings argue against an important predisposing effect of the MC1R and CDKN2A genes for ocular melanoma.
Resumo:
Predisposition to melanoma is genetically heterogeneous. Two high penetrance susceptibility genes, CDKN2A and CDK4, have so far been identified and mapping is ongoing to localize and identify others. With the advent of a catalogue of millions of potential DNA polymorphisms, attention is now also being focused on identification of genes that confer a more modest contribution to melanoma risk, such as those encoding proteins involved in pigmentation, DNA repair, cell growth and differentiation or detoxification of metabolites. One such pigmentation gene, MC1R, has not only been found to be a low penetrance melanoma gene but has also been shown to act as a genetic modifier of melanoma risk in individuals carrying CDKN2A mutations. Most recently, an environmental agent, ultraviolet radiation, has also been established as a modifier of melanoma risk in CDKN2A mutation carriers. Hence, melanoma is turning out to be an excellent paradigm for studying gene-gene and gene-environment interactions.
Resumo:
We report a novel activating mutation (E604K) of the calcium-sensing receptor in a family with autosomal dominant hypocalcemia. Whereas all affected individuals exhibited marked hypocalcemia, some cases with untreated hypocalcemia exhibited seizures in infancy, whereas others were largely asymptomatic from birth into adulthood. The missense mutation E604K (G2182A, GenBank accession no. U20759), which affects an amino acid residue in the C terminus of the cysteine-rich domain of the extracellular head, co-segregated with hypocalcemia in all seven individuals for whom DNA was available. Two unaffected, normocalcemic members of the family did not exhibit the mutation. The molecular impact of the mutation on two key components of the signaling response was assessed in HEK-293 cells transiently transfected with cDNA corresponding to either the wild-type calcium-sensing receptor or the E604K mutation derived by site-directed mutagenesis. There was a significant leftward shift in the concentration response curves for the effects of extracellular Ca2+ on both intracellular Ca2+ mobilization (determined by aequorin luminescence) and MAPK activity (determined by luciferase expression). The C terminus of the cysteine-rich domain of the extracellular head may normally act to suppress receptor activity in the presence of low extracellular Ca2+ concentrations.
Resumo:
Background - The rate and fitness effects of mutations are key in understanding the evolution of every species. Traditionally, these parameters are estimated in mutation accumulation experiments where replicate lines are propagated in conditions that allow mutations to randomly accumulate without the purging effect of natural selection. These experiments have been performed with many model organisms but we still lack empirical estimates of the rate and effects of mutation in the protists. Results - We performed a mutation accumulation (MA) experiment in Tetrahymena thermophila, a species that can reproduce sexually and asexually in nature, and measured both the mean decline and variance increase in fitness of 20 lines. The results obtained with T. thermophila were compared with T. pyriformis that is an obligate asexual species. We show that MA lines of T. thermophila go to extinction at a rate of 1.25 clonal extinctions per bottleneck. In contrast, populations of T. pyriformis show a much higher resistance to extinction. Variation in gene copy number is likely to be a key factor in explaining these results, and indeed we show that T. pyriformis has a higher mean copy number per cell than T. thermophila. From fitness measurements during the MA experiment, we infer a rate of mutation to copy number variation of 0.0333 per haploid MAC genome of T. thermophila and a mean effect against copy number variation of 0.16. A strong effect of population size in the rate of fitness decline was also found, consistent with the increased power of natural selection. Conclusions - The rate of clonal extinction measured for T. thermophila is characteristic of a mutational degradation and suggests that this species must undergo sexual reproduction to avoid the deleterious effects detected in the laboratory experiments. We also suggest that an increase in chromosomal copy number associated with the phenotypic assortment of amitotic divisions can provide an alternative mechanism to escape the deleterious effect of random chromosomal copy number variation in species like T. pyriformis that lack the resetting mechanism of sexual reproduction. Our results are relevant to the understanding of cell line longevity and senescence in ciliates.
Resumo:
A heteropaternal male twin case with two men being alleged fathers was investigated as requested by the Court. Up to 37 PCR-based polymorphic DNA systems were studied in this case which was complicated by a paternal ACTBP2 mutation detected in one twin. This is the first report on a STR mutation in a double paternity case where both biological fathers were indisputably identified. The STR systems enable the resolution of these complex genetic relationships even in a case where a mutation in one STR locus was encountered.
Resumo:
This paper presents a differential evolution heuristic to compute a solution of a system of nonlinear equations through the global optimization of an appropriate merit function. Three different mutation strategies are combined to generate mutant points. Preliminary numerical results show the effectiveness of the presented heuristic.