997 resultados para GANGLIOSIDE-BINDING ACTIVITIES
Resumo:
A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.
Resumo:
Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
Resumo:
Background: Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases. Results: In this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults, respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms associated with high MBL production. They presented high Fst values and were imbedded in regions with high nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results. Conclusion: Using extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have had a major role in shaping this polymorphic gene worldwide.
Resumo:
The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.
Resumo:
Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6(1)22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 angstrom, and contained two molecules in the asymetric unit. It diffracted to 2.24 angstrom resolution.
Resumo:
The oligopeptide-binding protein, OppA, binds and ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides expressed by several bacterial species. In the present study, we report the cloning, purification, refolding and conformational analysis of a recombinant OppA protein derived from Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The oppA gene was expressed in Escherichia coli BL21 (DE3) strain under optimized inducing conditions and the recombinant protein remained largely insoluble. Solubilization was achieved following refolding of the denatured protein. Circular dichroism analysis indicated that the recombinant OppA protein preserved conformational features of orthologs expressed by other bacterial species. The refolded recombinant OppA represents a useful tool for structural and functional analyses of the X. citri protein.
Resumo:
Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.
Resumo:
The extracts from the root, bark and seed of Garcinia kola are currently used in traditional medicine in Nigeria. The aim of this study was to evaluate the inhibitory activity of crude extracts of G. kola on Fusobacterium nucleatum isolated from the oral cavity. Methanol and aqueous extracts were prepared from the seed and the minimal inhibitory concentration was evaluated by the agar dilution method, using a Wilkins-Chalgren agar supplemented with horse blood (5%), hemin (5 mu g/ml) and menadione (1 mu g/ml). Antimicrobial activity of plant extracts on microbial biofilms was determined in microtiter plates. The seed of G. kola demonstrated significant inhibitory action on F. nucleatum isolates at a concentration of 1.25 and 12.5 mg/ml for amoxicillin resistant strain. It was able to inhibit the microbial biofilm formed by the association of F. nucleatum with Porphyromonas gingivalis ATCC 33277, Aggregatibacter actinomycetemcomitans ATCC 33384 and Prevotella intermedia ATCC 2564 at a concentration of 25 mg/ml. The in-vitro inhibitory effect of G. kola on F. nucleatum population suggests a potential role for its use in oral hygiene.
Resumo:
Background: Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins. Methodology/Principal Findings: Here, we performed yeast two-hybrid screens with human septins 1-10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments. Conclusions/Significance: If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the ""group rule"", i.e. members of the same group (e. g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.
Resumo:
Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.
Resumo:
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.
Resumo:
Salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their complexes [Zn(LASSBio-466) H(2)O](2) (1) and [Zn(HLASSBio-1064) Cl](2) (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordination the anti-nociceptive activity was favored in the complex 1. H(2)LASSBio-466 inhibited only the first phase of the formalin test, while 1 was active in the second phase, like indomethacin, indicating its ability to inhibit nociception associated with the inflammatory response. Hence coordination to zinc(II) altered the pharmacological profile of H(2)LASSBio-466. H(2)LASSBio-1064 inhibited both phases but this effect was not improved by coordination. The studied compounds did not increase the latency of response in the hot plate model, indicating their lack of central anti-nociceptive activity. All compounds showed levels of inhibition of zymosan-induced peritonitis comparable or superior to indomethacin, indicating an expressive anti-inflammatory profile.
Resumo:
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.
Resumo:
Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.
Resumo:
Schistosomiasis is a tropical disease caused by Schistosoma and occurs in 54 countries, mainly in South America, the Caribbean region, Africa and the eastern Mediterranean. Currently, 5 to 6 million Brazilian people are infected and 30,000 are under infection risk. Typical of poor regions, this disease is associated with the lack of basic sanitation and very frequently to the use of contaminated water in agriculture, housework and leisure. One of the most efficient methods of controlling the disease is application of molluscicides to eliminate or to reduce the population of the intermediate host snail Biomphalaria glabrata. Studies on molluscicidal activity of plant extracts have been stimulated by issues such as environmental preservation, high cost and recurrent resistance of snails to synthetic molluscicides. The aim of this study was to determine the molluscicide action of extracts from Piperaceae species on adult and embryonic stages of B. glabrata. Fifteen extracts from 13 Piperaceae species were obtained from stems, leaves and roots. Toxicity of extracts was evaluated against snails at two different concentrations (500 and 100 ppm) and those causing 100% mortality at 100 ppm concentration were selected to obtain the LC(90) (lethal concentration of 90% mortality). Piper aduncum, P. crassinervium, P. cuyabanum, P. diospyrifolium and P. hostmannianum gave 100% mortality of adult snails at concentrations ranging from 10 to 60 ppm. These extracts were also assayed on embryonic stages of B. glabrata and those from P. cuyabanum and P. hostmannianum showed 100% ovicidal action at 20 ppm.