348 resultados para GALACTO-OLIGOSACCHARIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review about composition, origin and importance of carbohydrates in honey is presented. Fructose and glucose are the major carbohydrates, ranging from 65-85 % of the total soluble solids. Other minor carbohydrates, chiefly di- and trisaccharides, have been also identified. Fructose, glucose and sucrose are mainly originated from nectar. Oligosaccharides are mainly formed by trans-alpha-D-glucosylation reactions catalysed by honeybee alpha-D-glucosidase. The profile of carbohydrates can be useful for the identification of the brazilian region in which honey was produced and may also be useful for testing brazilian honey authenticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maltodextrin was produced from cassava and corn starch by enzymatic hydrolysis with alpha-amylase. The cassava starch hydrolysis rate was higher than that of corn starches in maltodextrin production with shorter dextrose equivalent (DE). DE values do not show directly the nature of the obtained oligosaccharides. Maltodextrin produced from cassava and corn starch was analysed by high performance liquid chromatography (HPLC), and the analysis showed that maltodextrin production differs according to the source of the starch. This is important in defining the application of the maltodextrin, according to its desired function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucosidases are involved in key steps in the processing of oligosaccharides by cleaving O-glucose residues. Since they catalyze breaking and transfer reactions of glucosidic groups for the normal growth and development of all the cells, defects or genetic deficiencies in these enzymes are associated with serious disorders of the carbohydrate metabolism. Thus, glucosidases represent important targets to develop inhibitors, owing to their potential activities against viruses, tumoral growth and metastasis, diabetes, Gaucher's disease and other syndromes associated with the lisosomal storage of glucoesphingolipids, and osteoarthritis. This paper presents a description of the biochemical pathways and mechanisms of alpha and beta-glucosidases, and the currently available drugs capable to inhibit these enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclodextrins (CDs) are cyclic oligosaccharides comprised of six or more glucose units connected by alpha-1,4 bonds. They have hydrophobic cavities with a hydrophilic exterior, and are versatile receptors for a variety of substrates. This ability allows them to be applied in many fields, as distinct as supramolecular chemistry, nanotechnology, pharmaceuticals, green chemistry, agrochemicals, analytical chemistry, toiletries, foods, and cosmetics. This review summarizes several aspects related to the physico-chemical properties of CDs and discusses their potential applications illustrated by recent examples. The prospects for their use in several areas are also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis is a vascular inflammatory disease causing coronary artery disease, myocardial infarct and stroke, the leading causes of death in Finland and in many other countries. The development of atherosclerotic plaques starts already in childhood and is an ongoing process throughout life. Rupture of a plaque and the following occlusion of the vessel is the main reason for myocardial infarct and stroke, but despite extensive research, the prediction of rupture remains a major clinical problem. Inflammation is considered a key factor in the vulnerability of plaques to rupture. Measuring the inflammation in plaques non-invasively is one potential approach for identification of vulnerable plaques. The aim of this study was to evaluate tracers for positron emission tomography (PET) imaging of vascular inflammation. The studies were performed with a mouse model of atherosclerosis by using ex vivo biodistribution, autoradiography and in vivo PET and computed tomography (CT). Several tracers for inflammation activity were tested and compared with the morphology of the plaques. Inflammation in the atherosclerotic plaques was evaluated as expression of active macrophages. Systematic analysis revealed that the uptake of 18F-FDG and 11C-choline, tracers for metabolic activity in inflammatory cells, was more prominent in the atherosclerotic plaques than in the surrounding healthy vessel wall. The tracer for αvβ3 integrin, 18Fgalacto- RGD, was also found to have high potential for imaging inflammation in the plaques. While 11C-PK11195, a tracer targeted to receptors in active macrophages, was shown to accumulate in active plaques, the target-to-background ratio was not found to be ideal for in vivo imaging purposes. In conclusion, tracers for the imaging of inflammation in atherosclerotic plaques can be tested in experimental pre-clinical settings to select potential imaging agents for further clinical testing. 18F-FDG, 18F-galacto-RGD and 11C-choline choline have good properties, and further studies to clarify their applicability for atherosclerosis imaging in humans are warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain sweet sorghums (Sorghum bicolor) inhibit the secondary sporulation of Claviceps africana, which occurs on exuded ergot honeydew when the parasite is supplied with excess sucrose, which is then transformed to unique free oligosaccharides fructosyl - mannitol and difructosyl - mannitol with spore germination inhibiting properties. Five accessions (BRA-035726-SUGAR DRIP, BRA-035696-THEIS, BRA-036013-MN-4578, BRA-035947-MN-4418 and CMSXS-633) of sweet sorghum were selected among 50 evaluated. These five accessions failed to support secondary sporulation on the "honeydew" exuded from infected florets. There was a higher concentration (%w/v) of the free oligosaccharides on the honeydew of these accessions when compared to a hybrid male-sterile grain sorghum. Therefore, a possible strategy would be seek to incorporate a sweet character into "A" lines for hybrid seed production in order to restrict secondary disease spread.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysacharide (LPS) present on the outer leaflet of Gram-negative bacteria is important for the adaptation of the bacteria to the environment. Structurally, LPS can be divided into three parts: lipid A, core and O-polysaccharide (OPS). OPS is the outermost and also the most diverse moiety. When OPS is composed of identical sugar residues it is called homopolymeric and when it is composed of repeating units of oligosaccharides it is called heteropolymeric. Bacteria synthesize LPS at the inner membrane via two separate pathways, Lipid A-core via one and OPS via the other. These are ligated together in the periplasmic space and the completed LPS molecule is translocated to the surface of the bacteria. The genes directing the OPS biosynthesis are often clustered and the clusters directing the biosynthesis of heteropolymeric OPS often contain genes for i) the biosynthesis of required NDP-sugar precursors, ii) glycosyltransferases needed to build up the repeating unit, iii) translocation of the completed O-unit to the periplasmic side of the inner membrane (flippase) and iv) polymerization of the repeating units to complete OPS. The aim of this thesis was to characterize the biosynthesis of the outer core (OC) of Yersinia enterocolitica serotype O:3 (YeO3). Y. enterocolitica is a member of the Gram-negative Yersinia genus and it causes diarrhea followed sometimes by reactive arthritis. The chemical structure of the OC and the nucleotide sequence of the gene cluster directing its biosynthesis were already known; however, no experimental evidence had been provided for the predicted functions of the gene products. The hypothesis was that the OC biosynthesis would follow the pathway described for heteropolymeric OPS, i.e. a Wzy-dependent pathway. In this work the biochemical activities of two enzymes involved in the NDP-sugar biosynthesis was established. Gne was determined to be a UDP-N-acetylglucosamine-4-epimerase catalyzing the conversion of UDP-GlcNAc to UDP-GalNAc and WbcP was shown to be a UDP-GlcNAc- 4,6-dehydratase catalyzing the reaction that converts UDP-GlcNAc to a rare UDP-2-acetamido- 2,6-dideoxy-d-xylo-hex-4-ulopyranose (UDP-Sugp). In this work, the linkage specificities and the order in which the different glycosyltransferases build up the OC onto the lipid carrier were also investigated. In addition, by using a site-directed mutagenesis approach the catalytically important amino acids of Gne and two of the characterized glycosyltranferases were identified. Also evidence to show the enzymes involved in the ligations of OC and OPS to the lipid A inner core was provided. The importance of the OC to the physiology of Y. enterocolitica O:3 was defined by determining the minimum requirements for the OC to be recognized by a bacteriophage, bacteriocin and monoclonal antibody. The biological importance of the rare keto sugar (Sugp) was also shown. As a conclusion this work provides an extensive overview of the biosynthesis of YeO3 OC as it provides a substantial amount of information of the stepwise and coordinated synthesis of the Ye O:3 OC hexasaccharide and detailed information of its properties as a receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral alpha-mannosidase and lysosomal MAN2B1 alpha-mannosidase belong to glycoside hydrolase family 38, which contains essential enzymes required for the modification and catabolism of asparagine-linked glycans on proteins. MAN2B1 catalyses lysosomal glycan degradation, while neutral α-mannosidase is most likely involved in the catabolism of cytosolic free oligosaccharides. These mannose containing saccharides are generated during glycosylation or released from misfolded glycoproteins, which are detected by quality control in the endoplasmic reticulum. To characterise the biological function of human neutral α-mannosidase, I cloned the alpha-mannosidase cDNA and recombinantly expressed the enzyme. The purified enzyme trimmed the putative natural substrate Man9GlcNAc to Man5GlcNAc, whereas the reducing end GlcNAc2 limited trimming to Man8GlcNAc2. Neutral α-mannosidase showed highest enzyme activity at neutral pH and was activated by the cations Fe2+, Co2+ and Mn2+, Cu2+ in turn had a strong inhibitory effect on alpha-mannosidase activity. Analysis of its intracellular localisation revealed that neutral alpha-mannosidase is cytosolic and colocalises with proteasomes. Further work showed that the overexpression of neutral alpha-mannosidase affected the cytosolic free oligosaccharide content and led to enhanced endoplasmic reticulum associated degradation and underglycosylation of secreted proteins. The second part of the study focused on MAN2B1 and the inherited lysosomal storage disorder α-mannosidosis. In this disorder, deficient MAN2B1 activity is associated with mutations in the MAN2B1 gene. The thesis reports the molecular consequences of 35 alpha-mannosidosis associated mutations, including 29 novel missense mutations. According to experimental analyses, the mutations fall into four groups: Mutations, which prevent transport to lysosomes are accompanied with a lack of proteolytic processing of the enzyme (groups 1 and 3). Although the rest of the mutations (groups 2 and 4) allow transport to lysosomes, the mutated proteins are less efficiently processed to their mature form than is wild type MAN2B1. Analysis of the effect of the mutations on the model structure of human lysosomal alpha-mannosidase provides insights on their structural consequences. Mutations, which affect amino acids important for folding (prolines, glycines, cysteines) or domain interface interactions (arginines), arrest the enzyme in the endoplasmic reticulum. Surface mutations and changes, which do not drastically alter residue volume, are tolerated better. Descriptions of the mutations and clinical data are compiled in an α-mannosidosis database, which will be available for the scientific community. This thesis provides a detailed insight into two ubiquitous human alpha-mannosidases. It demonstrates that neutral alpha-mannosidase is involved in the degradation of cytosolic oligosaccharides and suggests that the regulation of this α-mannosidase is important for maintaining the cellular homeostasis of N-glycosylation and glycan degradation. The study on alpha-mannosidosis associated mutations identifies multiple mechanisms for how these mutations are detrimental for MAN2B1 activity. The α-mannosidosis database will benefit both clinicians and scientific research on lysosomal alpha‑mannosidosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbohydrates are one of the most abundant classes of biomolecules on earth. In the initial stages of research on carbohydrates much effort was focused on investigation and determination of the structural aspects and complex nature of individual monosaccharides. Later on, development of protective group strategies and methods for oligosaccharide synthesis became the main topics of research. Today, the methodologies developed early on are being utilized in the production of carbohydrates for biological screening events. This multidisciplinary approach has generated the new discipline of glycobiology which focuses on research related to the appearance and biological significance of carbohydrates. In more detail, studies in glycobiology have revealed the essential roles of carbohydrates in cell-cell interactions, biological recognition events, protein folding, cell growth and tumor cell metastasis. As a result of these studies, carbohydrate derived diagnostic and therapeutic agents are likely to be of growing interest in the future. In this doctoral thesis, a journey through the fundamentals of carbohydrate synthesis is presented. The research conducted on this journey was neither limited to the study of any particular phenomena nor to the addressing of a single synthetic challenge. Instead, the focus was deliberately shifted from time to time in order to broaden the scope of the thesis, to continue the learning process and to explore new areas of carbohydrate research. Throughout the work, several previously reported synthetic protocols, especially procedures related to glycosylation reactions and protective group manipulations, were evaluated, modified and utilized or rejected. The synthetic molecules targeted within this thesis were either required for biological evaluations or utilized to study phenomena occuring in larger molecules. In addition, much effort was invested in the complete structural characterization of the synthesized compounds by a combination of NMR spectroscopic techniques and spectral simulations with the PERCH-software. This thesis provides the basics of working with carbohydrate chemistry. In more detail, synthetic strategies and experimental procedures for many different reactions and guidelines for the NMR-spectroscopic characterization of oligosaccharides and glycoconjugates are provided. Therefore, the thesis should prove valuable to researchers starting their own journeys in the ever expanding field of carbohydrate chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Verificar se o galactooligossacarídeo estimula a absorção de cálcio em ratos Wistar parcialmente gastrectomizados. MÉTODOS: Os animais foram laparotomizados (controle sham-operado) e parcialmente gastrectomizados (Billroth II) em grupos de 20 e 20 cada, respectivamente. Eles foram alimentados com uma dieta controle (AIN-93M), sem galacto-oligossacarídeo ou uma dieta contendo (galacto-oligossacarídeo - 50g/kg de dieta) durante oito semanas. Os animais foram divididos em quatro subgrupos: sham-operados e não gastrectomizados com galacto-oligossacarídeo, sham-operados e gastrectomizados sem galacto-oligossacarídeo. No dia final do estudo, o sangue total foi coletado para determinação da concentração de cálcio sérico. RESULTADOS: Na dieta no grupo com galacto-oligossacarídeo a excreção do cálcio nas fezes foi significativamente menor do que no grupo sem prebióticos. A absorção aparente de cálcio em ratos gastrectomizados e normais foi maior nos grupos alimentados com galacto-oligossacarídeo do que no grupo com dieta controle. CONCLUSÃO: A dieta com galacto-oligossacarídeos previne a osteopenia em ratos parcialmente gastrectomizados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamium album accumulates starch, sucrose and raffinose-family oligosaccharides (RFO) as the major products of photosynthesis. These products were measured in leaves throughout a sixteen-hour photoperiod and under various irradiance conditions. There was continuous accumulation of sucrose and starch. The rate of gas exchange was higher at 500 µEm² s-1 and 900 µEm²s-1 than at 300 µEm² s-1. The rate of photosynthesis did not decline over the sixteen-hour photoperiod, which suggested that there was no short-term feed back inhibition due to sucrose accumulation in this plant. When the products of photosynthesis were compared at the end of the photoperiod, only sucrose increased in abundance at high irradiance. The RFO pool in leaves was shown to contain raffinose, stachyose and verbascose; galactinol was also present. 14CO2 feeding demonstrated that roots and flowers were the major sinks. The middle leaves were major source leaves whilst young leaves acted as both sources and sinks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Lamium album, sucrose and raffinose-family oligosaccharides are the major products of photosynthesis that are stored in leaves. Using gas analysis and 14CO2 feeding, we compared photosynthesis and the partitioning of recently-fixed carbon in plants where sink activity was lowered by excision of flowers and chilling of roots with those where sink activity was not modified. Reduction in sink activity led to a reduction in the maximum rate of photosynthesis, to retention of fixed carbon in source leaves and to the progressive accumulation of raffinose-family oligosaccharides. This ultimately affected the extractable activities of invertase and sucrose phosphate synthase. At the end of the light period, invertase activity was significantly higher in treated plants. By contrast sucrose phosphate synthase activity was significantly lower in treated plants. We propose that reducing sink activity in L. album is associated with a shift in metabolism away from starch and sucrose synthesis and towards sucrose catabolism, galactinol utilisation and the synthesis of raffinose-family oligosaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids, ILs, have recently been studied with accelerating interest to be used for a deconstruction/fractionation, dissolution or pretreatment processing method of lignocellulosic biomass. ILs are usually utilized combined with heat. Regarding lignocellulosic recalcitrance toward fractionation and IL utilization, most of the studies concern IL utilization in the biomass fermentation process prior to the enzymatic hydrolysis step. It has been demonstrated that IL-pretreatment gives more efficient hydrolysis of the biomass polysaccharides than enzymatic hydrolysis alone. Both cellulose (especially cellulose) and lignin are very resistant towards fractionation and even dissolution methods. As an example, it can be mentioned that softwood, hardwood and grass-type plant species have different types of lignin structures leading to the fact that softwood lignin (guaiacyl lignin dominates) is the most difficult to solubilize or chemically disrupt. In addition to the known conventional biomass processing methods, several ILs have also been found to efficiently dissolve either cellulose and/or wood samples – different ILs are suitable for different purposes. An IL treatment of wood usually results in non-fibrous pulp, where lignin is not efficiently separated and wood components are selectively precipitated, as cellulose is not soluble or degradable in ionic liquids under mild conditions. Nevertheless, new ILs capable of rather good fractionation performance have recently emerged. The capability of the IL to dissolve or deconstruct wood or cellulose depends on several factors, (e.g. sample origin, the particle size of the biomass, mechanical treatments as pulverization, initial biomassto-IL ratio, water content of the biomass, possible impurities of IL, reaction conditions, temperature etc). The aim of this study was to obtain (fermentable) saccharides and other valuable chemicals from wood by a combined heat and IL-treatment. Thermal treatments alone contribute to the degradation of polysaccharides (e.g. 150 °C alone is said to cause the degradation of polysaccharides), thus temperatures below that should be used, if the research interest lies on the IL effectiveness. On the other hand, the efficiency of the IL-treatment can also be enhanced to combine other treatment methods, (e.g. microwave heating). The samples of spruce, pine and birch sawdust were treated with either 1-Ethyl-3-methylimidazolium chloride, Emim Cl, or 1-Ethyl-3-methylimidazolium acetate, Emim Ac, (or with ionized water for comparison) at various temperatures (where focus was between 80 and 120 °C). The samples were withdrawn at fixed time intervals (the main interest treatment time area lied between 0 and 100 hours). Double experiments were executed. The selected mono- and disaccharides, as well as their known degradation products, 5-hydroxymethylfurfural, 5-HMF, and furfural were analyzed with capillary electrophoresis, CE, and high-performance liquid chromatography, HPLC. Initially, even GC and GC-MS were utilized. Galactose, glucose, mannose and xylose were the main monosaccharides that were present in the wood samples exposed to ILs at elevated temperatures; in addition, furfural and 5-HMF were detected; moreover, the quantitative amount of the two latter ones were naturally increasing in line with the heating time or the IL:wood ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biocatalysis can be applied in organic synthetic chemistry to counter challenges posed by increased demands towards chemo-, regio- and stereoselectivity, not forgetting the need for greener chemistry. During the last 30 years, biocatalysis with the use of enzymes as chiral catalysts has become more common in chemistry laboratories and industrial processes. In this thesis, the use of lipases as versatile biocatalysts in the acylation of alcohols is examined both in the light of literature examples and four original publications. In the first part of the work presented in this thesis lipases were utilized in two examples concerning secondary alcohols. First, the kinetic resolution of heterocyclic aromatic secondary alcohols through transesterification was thoroughly examined including the studies of competing hydrolysis and esterification reactions. In another example, lipases were utilized in the formation of a dynamic systemic resolution (DSR) process which in turn was used as a developmental tool in the optimization of the dynamic kinetic resolution (DKR) of five heterocyclic aromatic cyanohydrins in one pot for the preparation of cyanohydrin esters as single enantiomers. In the second part of the work, the regio- and stereoselectivity of lipases was used to form sugar conjugates of glyceric and β-amino acids. The primary hydroxyl groups of methyl α-D-galacto-, -gluco- and -mannopyranosides were now acylated trough lipasecatalyzed transesterification and enantioselective lipase-catalyzed ring-opening of β- lactams, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of crude xyloglucan (XG) preparations from jatobá (Hymenaea courbaril var. stilbocarpa (Hayne) Y. T. Lee & Langenh.) seeds on Arabidopsis thaliana (L.) Heynh. root system development was investigated. The XG extracts exerted a dual effect on root system development by slowing down root growth and improving lateral root formation. These observed morphological changes were not due to oligosaccharides that could be generated following hydrolysis of the XG polymers, since XG hydrolysate induced a drastic inhibition of the overall growth process of the Arabidopsis thaliana seedlings. Histochemical test of GUS gene expression assay performed on seven and 14-days-old transgenic Arabidopsis thaliana plants carrying the CycB1;1-GUS fusion indicated that the improvement of the lateral root development by jatobá XG extracts was not correlated with the expression of this cell cycle marker gene in the root system. A potential agricultural application of jatobá seeds XG extract is discussed.