856 resultados para Fuzzy inference system
Resumo:
The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal with. In Stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods are known as events. In this chapter, two feature extraction schemes have been developed to identify and characterise the events in Stabilometry and EEG signals. Based on these extracted features, an Adaptive Fuzzy Inference Neural network has been applied for classification of Stabilometry and EEG signals.
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of speed of the analysis, precisión, and usefulness of the information obtained. To this end, design and implementation aspects are discussed for two practical abstract interpretation-based flow analysis systems: MA , the MCC And-parallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained (rom these implementations and, as an example of an application, a study of the usefulness of the mode information obtained in reducing run-time checks in independent and-parallelism.Based on the results obtained, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
En los últimos años, ha crecido de forma significativa el interés por la utilización de dispositivos capaces de reconocer gestos humanos. En este trabajo, se pretenden reconocer gestos manuales colocando sensores en la mano de una persona. El reconocimiento de gestos manuales puede ser implementado para diversos usos y bajo diversas plataformas: juegos (Wii), control de brazos robóticos, etc. Como primer paso, se realizará un estudio de las actuales técnicas de reconocimiento de gestos que utilizan acelerómetros como sensor de medida. En un segundo paso, se estudiará como los acelerómetros pueden utilizarse para intentar reconocer los gestos que puedan realizar una persona (mover el brazo hacia un lado, girar la mano, dibujar un cuadrado, etc.) y los problemas que de su utilización puedan derivarse. Se ha utilizado una IMU (Inertial Measurement Unit) como sensor de medida. Está compuesta por tres acelerómetros y tres giróscopos (MTi-300 de Xsens). Con las medidas que proporcionan estos sensores se realiza el cálculo de la posición y orientación de la mano, representando esta última en función de los ángulos de Euler. Un aspecto importante a destacar será el efecto de la gravedad en las medidas de las aceleraciones. A través de diversos cálculos y mediante la ayuda de los giróscopos se podrá corregir dicho efecto. Por último, se desarrollará un sistema que identifique la posición y orientación de la mano como gestos reconocidos utilizando lógica difusa. Tanto para la adquisición de las muestras, como para los cálculos de posicionamiento, se ha desarrollado un código con el programa Matlab. También, con este mismo software, se ha implementado un sistema de lógica difusa con la que se realizará el reconocimiento de los gestos, utilizando la herramienta FIS Editor. Las pruebas realizadas han consistido en la ejecución de nueve gestos por diferentes personas teniendo una tasa de reconocimiento comprendida entre el 90 % y 100 % dependiendo del gesto a identificar. ABSTRACT In recent years, it has grown significantly interest in the use of devices capable of recognizing human gestures. In this work, we aim to recognize hand gestures placing sensors on the hand of a person. The recognition of hand gestures can be implemented for different applications on different platforms: games (Wii), control of robotic arms ... As a first step, a study of current gesture recognition techniques that use accelerometers and sensor measurement is performed. In a second step, we study how accelerometers can be used to try to recognize the gestures that can make a person (moving the arm to the side, rotate the hand, draw a square, etc...) And the problems of its use can be derived. We used an IMU (Inertial Measurement Unit) as a measuring sensor. It comprises three accelerometers and three gyroscopes (Xsens MTI-300). The measures provided by these sensors to calculate the position and orientation of the hand are made, with the latter depending on the Euler angles. An important aspect to note is the effect of gravity on the measurements of the accelerations. Through various calculations and with the help of the gyroscopes can correct this effect. Finally, a system that identifies the position and orientation of the hand as recognized gestures developed using fuzzy logic. Both the acquisition of samples to calculate position, a code was developed with Matlab program. Also, with the same software, has implemented a fuzzy logic system to be held with the recognition of gestures using the FIS Editor. Tests have involved the execution of nine gestures by different people having a recognition rate between 90% and 100% depending on the gesture to identify.
Resumo:
La presente Tesis está orientada al análisis de la supervisión multidistribuida de tres procesos agroalimentarios: el secado solar, el transporte refrigerado y la fermentación de café, a través de la información obtenida de diferentes dispositivos de adquisición de datos, que incorporan sensores, así como el desarrollo de metodologías de análisis de series temporales, modelos y herramientas de control de procesos para la ayuda a la toma de decisiones en las operaciones de estos entornos. En esta tesis se han utilizado: tarjetas RFID (TemTrip®) con sistema de comunicación por radiofrecuencia y sensor de temperatura; el registrador (i-Button®), con sensor integrado de temperatura y humedad relativa y un tercer prototipo empresarial, módulo de comunicación inalámbrico Nlaza, que integra un sensor de temperatura y humedad relativa Sensirion®. Estos dispositivos se han empleado en la conformación de redes multidistribuidas de sensores para la supervisión de: A) Transportes de producto hortofrutícola realizados en condiciones comerciales reales, que son: dos transportes terrestre de producto de IV gama desde Murcia a Madrid; transporte multimodal (barco-barco) de limones desde Montevideo (Uruguay) a Cartagena (España) y transporte multimodal (barco-camión) desde Montevideo (Uruguay) a Verona (Italia). B) dos fermentaciones de café realizadas en Popayán (Colombia) en un beneficiadero. Estas redes han permitido registrar la dinámica espacio-temporal de temperaturas y humedad relativa de los procesos estudiados. En estos procesos de transporte refrigerado y fermentación la aplicación de herramientas de visualización de datos y análisis de conglomerados, han permitido identificar grupos de sensores que presentan patrones análogos de sus series temporales, caracterizando así zonas con dinámicas similares y significativamente diferentes del resto y permitiendo definir redes de sensores de menor densidad cubriendo las diferentes zonas identificadas. Las metodologías de análisis complejo de las series espacio-temporales (modelos psicrométricos, espacio de fases bidimensional e interpolaciones espaciales) permitieron la cuantificación de la variabilidad del proceso supervisado tanto desde el punto de vista dinámico como espacial así como la identificación de eventos. Constituyendo así herramientas adicionales de ayuda a la toma de decisiones en el control de los procesos. Siendo especialmente novedosa la aplicación de la representación bidimensional de los espacios de fases en el estudio de las series espacio-temporales de variables ambientales en aplicaciones agroalimentarias, aproximación que no se había realizado hasta el momento. En esta tesis también se ha querido mostrar el potencial de un sistema de control basado en el conocimiento experto como es el sistema de lógica difusa. Se han desarrollado en primer lugar, los modelos de estimación del contenido en humedad y las reglas semánticas que dirigen el proceso de control, el mejor modelo se ha seleccionado mediante un ensayo de secado realizado sobre bolas de hidrogel como modelo alimentario y finalmente el modelo se ha validado mediante un ensayo en el que se deshidrataban láminas de zanahoria. Los resultados sugirieron que el sistema de control desarrollado, es capaz de hacer frente a dificultades como las variaciones de temperatura día y noche, consiguiendo un producto con buenas características de calidad comparables a las conseguidas sin aplicar ningún control sobre la operación y disminuyendo así el consumo energético en un 98% con respecto al mismo proceso sin control. La instrumentación y las metodologías de análisis de datos implementadas en esta Tesis se han mostrado suficientemente versátiles y transversales para ser aplicadas a diversos procesos agroalimentarios en los que la temperatura y la humedad relativa sean criterios de control en dichos procesos, teniendo una aplicabilidad directa en el sector industrial ABSTRACT This thesis is focused on the analysis of multi-distributed supervision of three agri-food processes: solar drying, refrigerated transport and coffee fermentation, through the information obtained from different data acquisition devices with incorporated sensors, as well as the development of methodologies for analyzing temporary series, models and tools to control processes in order to help in the decision making in the operations within these environments. For this thesis the following has been used: RFID tags (TemTrip®) with a Radiofrequency ID communication system and a temperature sensor; the recorder (i-Button®), with an integrated temperature and relative humidity and a third corporate prototype, a wireless communication module Nlaza, which has an integrated temperature and relative humidity sensor, Sensirion®. These devices have been used in creating three multi-distributed networks of sensors for monitoring: A) Transport of fruits and vegetables made in real commercial conditions, which are: two land trips of IV range products from Murcia to Madrid; multimodal transport (ship - ship) of lemons from Montevideo (Uruguay) to Cartagena (Spain) and multimodal transport (ship - truck) from Montevideo (Uruguay) to Verona (Italy). B) Two coffee fermentations made in Popayan (Colombia) in a coffee processing plant. These networks have allowed recording the time space dynamics of temperatures and relative humidity of the processed under study. Within these refrigerated transport and fermentation processes, the application of data display and cluster analysis tools have allowed identifying sensor groups showing analogical patterns of their temporary series; thus, featuring areas with similar and significantly different dynamics from the others and enabling the definition of lower density sensor networks covering the different identified areas. The complex analysis methodologies of the time space series (psychrometric models, bi-dimensional phase space and spatial interpolation) allowed quantifying the process variability of the supervised process both from the dynamic and spatial points of view; as well as the identification of events. Thus, building additional tools to aid decision-making on process control brought the innovative application of the bi-dimensional representation of phase spaces in the study of time-space series of environmental variables in agri-food applications, an approach that had not been taken before. This thesis also wanted to show the potential of a control system based on specialized knowledge such as the fuzzy logic system. Firstly, moisture content estimation models and semantic rules directing the control process have been developed, the best model has been selected by an drying assay performed on hydrogel beads as food model; and finally the model has been validated through an assay in which carrot sheets were dehydrated. The results suggested that the control system developed is able to cope with difficulties such as changes in temperature daytime and nighttime, getting a product with good quality features comparable to those features achieved without applying any control over the operation and thus decreasing consumption energy by 98% compared to the same uncontrolled process. Instrumentation and data analysis methodologies implemented in this thesis have proved sufficiently versatile and cross-cutting to apply to several agri-food processes in which the temperature and relative humidity are the control criteria in those processes, having a direct effect on the industry sector.
Resumo:
This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.
Resumo:
One of the most important problems of e-learning system is studied in given paper. This problem is building of data domain model. Data domain model is based on usage of correct organizing knowledge base. In this paper production-frame model is offered, which allows structuring data domain and building flexible and understandable inference system, residing in production system.
Resumo:
Trenchless methods have been considered to be a viable solution for pipeline projects in urban areas. Their applicability in pipeline projects is expected to increase with the rapid advancements in technology and emerging concerns regarding social costs related to trenching methods. Selecting appropriate project delivery system (PDS) is a key to the success of trenchless projects. To ensure success of the project, the selected project delivery should be tailored to trenchless project specific characteristics and owner needs, since the effectiveness of project delivery systems differs based on different project characteristics and owners requirements. Since different trenchless methods have specific characteristics such rate of installation, lengths of installation, and accuracy, the same project delivery systems may not be equally effective for different methods. The intent of this paper is to evaluate the appropriateness of different PDS for different trenchless methods. PDS are examined through a structured decision-making process called Fuzzy Delivery System Selection Model (FDSSM). The process of incorporating the impacts of: (a) the characteristics of trenchless projects and (b) owners’ needs in the FDSSM is performed by collecting data using questionnaires deployed to professionals involved in the trenchless industry in order to determine the importance of delivery systems selection attributes for different trenchless methods, and then analyzing this data. The sensitivity of PDS rankings with respect to trenchless methods is considered in order to evaluate whether similar project delivery systems are equally effective in different trenchless methods. The effectiveness of PDS with respect to attributes is defined as follows: a project delivery system is most effective with respect to an attribute (e.g., ability to control growth in costs ) if there is no project delivery system that is more effective than that PDS. The results of this study may assist trenchless project owners to select the appropriate PDS for the trenchless method selected.
Resumo:
Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.
Resumo:
Los mercados asociados a los servicios de voz móvil a móvil, brindados por operadoras del Sistema Móvil Avanzado en Latinoamérica, han estado sujetos a procesos regulatorios motivados por la dominancia en el mercado de un operador, buscando obtener óptimas condiciones de competencia. Específicamente en Ecuador, la Superintendencia de Telecomunicaciones (Organismo Técnico de Control de Telecomunicaciones) desarrolló un modelo para identificar acciones de regulación que puedan proporcionar al mercado efectos sostenibles de competencia en el largo plazo. Este artículo trata sobre la aplicación de la ingeniería de control para desarrollar un modelo integral del mercado, empleando redes neuronales para la predicción de trarifas de cada operador y un modelo de lógica difusa para predecir la demanda. Adicionalmente, se presenta un modelo de inferencia de lógica difusa para reproducir las estrategias de mercadeo de los operadores y la influencia sobre las tarifas. Dichos modelos permitirían la toma adecuada de decisiones y fueron validados con datos reales.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.
Resumo:
A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Systemidentification, evolutionary automatic, data-driven model, fuzzy Takagi-Sugeno grammar, genotype interpretability, toxicity-prediction