957 resultados para Function Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network governance of collective learning processes is an essential approach to sustainable development. The first section of the article briefly refers to recent theories about both market and government failures that express scepticism about the way framework conditions for market actors are set. For this reason, the development of networks for collective learning processes seems advantageous if new solutions are to be developed in policy areas concerned with long-term changes and a stepwise internalisation of externalities. With regard to corporate actors’ interests, the article shows recent insights from theories about the knowledge-based firm, where the creation of new knowledge is based on the absorption of societal views. This concept shifts the focus towards knowledge generation as an essential element in the evolution of sustainable markets. This involves at the same time the development of new policies. In this context innovation-inducing regulation is suggested and discussed. The evolution of the Swedish, German and Dutch wind turbine industries are analysed based on the approach of governance put forward in this article. We conclude that these coevolutionary mechanisms may take for granted some of the stabilising and orientating functions previously exercised by basic regulatory activities of the state. In this context, the main function of the governments is to facilitate learning processes that depart from the government functions suggested by welfare economics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter outlines the relationships between a number of key factors that influence learning and memory, and illustrates them by reference to studies on the foraging behaviour of fish. Learning can lead to significant improvements in foraging performance in only a few exposures, and at least some fish species are capable of adjusting their foraging strategy as patterns of patch profitability change. There is also evidence that the memory window for prey varies between fish species, and that this may be a function of environmental predictability. Convergence between behavioural ecology and comparative psychology offers promise in terms of developing more mechanistically realistic foraging models and explaining apparently 'suboptimal' patterns of behaviour. Foraging decisions involve the interplay between several distinct systems of learning and memory, including those that relate to habitat, food patches, prey types, conspecifics and predators. Fish biologists, therefore, face an interesting challenge in developing integrated accounts of fish foraging that explain how cognitive sophistication can help individual animals to deal with the complexity of the ecological context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study employed electropalatography (EPG) and a nonspeech measure of lingual function to examine, in detail, the articulatory production deficits of two individuals with Parkinson disease (PD) and hypokinetic dysarthria. Participants read 10 repetitions of CV words contained within the carrier phrase I saw a _ today while wearing an EPG artificial palate. Target consonants included the alveolar stop /t/, lateral approximant /l/, and the alveolar fricative /s/ in the /a/ vowel environment. The results of the two participants were compared to an age-matched control group. Examination of the perceptual features of articulatory production, lingual strength, fine force control and endurance, tongue-palate contact patterns, and segment durations were conducted. Results of the study revealed quite different articulatory deficits in the two participants. Specifically, the articulation of Participant One (P1) was characterized by a fast rate of speech, undershooting of articulatory targets, and reduced duration of consonant closures. In contrast, Participant Two (P2) demonstrated tongue-palate contact patterns indicative of impaired lingual control in the presence of both normal and increased articulatory segment durations. Potential reasons for the differing articulatory deficits were hypothesized. The current study demonstrated that assessment with EPG identified potential causes of consonant imprecision in two individuals with hypokinetic dysarthria. Directions for speech pathology intervention, salient from the results of the study, were also noted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of posteroventral pallidotomy on perceptual and physiological measures of articulatory function and speech intelligibility in Parkinson disease (M). The study examined 11 participants with M who underwent posteroventral pallidotomy Physiological measures of hp and tongue function. and perceptual measures of speech intelligibility were obtained prepallidotomy and 3 months postpallidotomy. The participants with PD were also assessed on the Unified Parkinsons Disease Rating Scale (UPDRS Part III) In addition, the study included a group of 16 participants with PD who did not undergo pallidotomy and a group of 30 nonneurologically impaired participants. Analyses of physiological articulatory function and speech intelligibility did not reveal corresponding improvements in motor speech function as observed in general limb motor function postpallidotomy. Overall, individual reliable change analyses revealed that the majority of surgical PD participants demonstrated no reliable change on perceptual and physiological measures of articulation. The cur rent study revealed preliminary evidence that articulatury function and speech intelligibility did not change following posteroventral pallidotomy in a group of individuals with PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SQL (Structured Query Language) is one of the essential topics in foundation databases courses in higher education. Due to its apparent simple syntax, learning to use the full power of SQL can be a very difficult activity. In this paper, we introduce SQLator, which is a web-based interactive tool for learning SQL. SQLator's key function is the evaluate function, which allows a user to evaluate the correctness of his/her query formulation. The evaluate engine is based on complex heuristic algorithms. The tool also provides instructors the facility to create and populate database schemas with an associated pool of SQL queries. Currently it hosts two databases with a query pool of 300+ across the two databases. The pool is divided into 3 categories according to query complexity. The SQLator user can perform unlimited executions and evaluations on query formulations and/or view the solutions. The SQLator evaluate function has a high rate of success in evaluating the user's statement as correct (or incorrect) corresponding to the question. We will present in this paper, the basic architecture and functions of SQLator. We will further discuss the value of SQLator as an educational technology and report on educational outcomes based on studies conducted at the School of Information Technology and Electrical Engineering, The University of Queensland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of feed-forward neural networks in real applications can be often be improved significantly if use is made of a-priori information. For interpolation problems this prior knowledge frequently includes smoothness requirements on the network mapping, and can be imposed by the addition to the error function of suitable regularization terms. The new error function, however, now depends on the derivatives of the network mapping, and so the standard back-propagation algorithm cannot be applied. In this paper, we derive a computationally efficient learning algorithm, for a feed-forward network of arbitrary topology, which can be used to minimize the new error function. Networks having a single hidden layer, for which the learning algorithm simplifies, are treated as a special case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to measure the performance of commercial virtual learning environment (VLE) systems, which helps the decision makers to select the appropriate system for their institutions. Design/methodology/approach – This paper develops an integrated multiple criteria decision making approach, which combines the analytic hierarchy process (AHP) and quality function deployment (QFD), to evaluate and select the best system. The evaluating criteria are derived from the requirements of those who use the system. A case study is provided to demonstrate how the integrated approach works. Findings – The major advantage of the integrated approach is that the evaluating criteria are of interest to the stakeholders. This ensures that the selected system will achieve the requirements and satisfy the stakeholders most. Another advantage is that the approach can guarantee the benchmarking to be consistent and reliable. From the case study, it is proved that the performance of a VLE system being used at the university is the best. Therefore, the university should continue to run the system in order to support and facilitate both teaching and learning. Originality/value – It is believed that there is no study that measures the performance of VLE systems, and thus decision makers may have difficulties in system evaluation and selection for their institutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Vapnik-Chervonenkis (VC) dimension is a combinatorial measure of a certain class of machine learning problems, which may be used to obtain upper and lower bounds on the number of training examples needed to learn to prescribed levels of accuracy. Most of the known bounds apply to the Probably Approximately Correct (PAC) framework, which is the framework within which we work in this paper. For a learning problem with some known VC dimension, much is known about the order of growth of the sample-size requirement of the problem, as a function of the PAC parameters. The exact value of sample-size requirement is however less well-known, and depends heavily on the particular learning algorithm being used. This is a major obstacle to the practical application of the VC dimension. Hence it is important to know exactly how the sample-size requirement depends on VC dimension, and with that in mind, we describe a general algorithm for learning problems having VC dimension 1. Its sample-size requirement is minimal (as a function of the PAC parameters), and turns out to be the same for all non-trivial learning problems having VC dimension 1. While the method used cannot be naively generalised to higher VC dimension, it suggests that optimal algorithm-dependent bounds may improve substantially on current upper bounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives insight into decreasing the time required for training. The realizable and over-realizable cases are studied in detail; the phase of learning in which the hidden units are unspecialized (symmetric phase) and the phase in which asymptotic convergence occurs are analyzed, and their typical properties found. Finally, simulations are performed which strongly confirm the analytic results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, there has been a considerable research activity in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, the representational capabilities and internal representations of the models are not well understood. We rigorously analyze a generalization of the Self-Organizing Map (SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as a non-autonomous dynamical system consisting off a set of fixed input maps. We show that contractive fixed input maps are likely to produce Markovian organizations of receptive fields o the RecSOM map. We derive bounds on parameter $\beta$ (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed input maps is guaranteed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Subclinical hypothyroidism (SCH) and cognitive dysfunction are both common in the elderly and have been linked. It is important to determine whether T4 replacement therapy in SCH confers cognitive benefit. Objective: Our objective was to determine whether administration of T4 replacement to achieve biochemical euthyroidism in subjects with SCH improves cognitive function. Design and Setting: We conducted a double-blind placebo-controlled randomized controlled trial in the context of United Kingdom primary care. Patients: Ninety-four subjects aged 65 yr and over (57 females, 37 males) with SCH were recruited from a population of 147 identified by screening. Intervention: T4 or placebo was given at an initial dosage of one tablet of either placebo or 25 µg T4 per day for 12 months. Thyroid function tests were performed at 8-weekly intervals with dosage adjusted in one-tablet increments to achieve TSH within the reference range for subjects in treatment arm. Fifty-two subjects received T4 (31 females, 21 males; mean age 73.5 yr, range 65–94 yr); 42 subjects received placebo (26 females, 16 males; mean age 74.2 yr, 66–84 yr). Main Outcome Measures: Mini-Mental State Examination, Middlesex Elderly Assessment of Mental State (covering orientation, learning, memory, numeracy, perception, attention, and language skills), and Trail-Making A and B were administered. Results: Eighty-two percent and 84% in the T4 group achieved euthyroidism at 6- and 12-month intervals, respectively. Cognitive function scores at baseline and 6 and 12 months were as follows: Mini-Mental State Examination T4 group, 28.26, 28.9, and 28.28, and placebo group, 28.17, 27.82, and 28.25 [not significant (NS)]; Middlesex Elderly Assessment of Mental State T4 group, 11.72, 11.67, and 11.78, and placebo group, 11.21, 11.47, and 11.44 (NS); Trail-Making A T4 group, 45.72, 47.65, and 44.52, and placebo group, 50.29, 49.00, and 46.97 (NS); and Trail-Making B T4 group, 110.57, 106.61, and 96.67, and placebo group, 131.46, 119.13, and 108.38 (NS). Linear mixed-model analysis demonstrated no significant changes in any of the measures of cognitive function over time and no between-group difference in cognitive scores at 6 and 12 months. Conclusions: This RCT provides no evidence for treating elderly subjects with SCH with T4 replacement therapy to improve cognitive function.