912 resultados para Friction coefficient
Resumo:
The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.
Resumo:
The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.
Resumo:
The present work analyzed the tribological behavior of coatings/surface modifications traditionally used in cold rolling mill rolls and new coatings/surface modificationswith potential to replace the carcinogenic hard chrome. The study started with identification of wear mechanisms occurring in real coldrollingmill rolls. Due the high cost and dimensions of the rolls, thereplication technique was used. Replicas were obtained from 4 different rolling millBrazilian companies before and after a normal rolling campaign. Initial sliding tests were conducted using spherical and cylindrical counter bodies in order to verifywhichtribological conditions allowed to reproduce the wear mechanisms found in the replicas. These tests indicated the use of reciprocating sliding tests with cylindrical counter bodies (line contact), normal load of 100 N, and test times of and 1 h and 5 h. Different surface modifications were carried out on samples produced from a fragment of a rolling mill roll. The specimens were heat treated and ground on both sides. After, some specimens were surface textured by electrical discharge texturing (EDT). For both groups (ground and EDT), subsequent treatments of chromium plating, electroless NiP coating and plasma nitriding were carried out. The results of the reciprocating tests showed that specimens with electroless NiP coating presented the lowest friction coefficients, while plasma nitrided specimens showed the highest. In general, previous surface texturing before the coating/surface modification increased the wear of the counter bodies. Oneexceptionwas for EDT with subsequent electroless NiP coating, which presented the lowest counter bodies wear rate. The samples withelectroless NiP coating promoted a tribolayer consisting of Nickel, Phosphorus and Oxygen on both the specimens andthecounter bodies, which was apparently responsible for the reduction of friction coefficient and wear rate. The increase of the test time reduced the wear rate of the samples, apparently due the stability of the tribolayers formed, except for the nitrided samples. For the textured specimens, NiP coating showed the best performance in maintaining the surface topography of the specimens after the sliding tests.
Resumo:
Factor-of-safety analyses of submarine slope failure depend critically on the shear strength of the slope material, which is often evaluated with residual strength values and for normally consolidated sediments. Here, we report on direct measurements of both shear strength and cohesion for a quartz-clay mixture over a wide range of overconsolidation ratios (OCRs). For normally consolidated sediment at low stresses, cohesion is the dominant source of shear strength compared to friction. Significant increases in peak shear strength occur for OCR > 4, and the primary source of this strength increase is due to increased cohesion, rather than friction. The proportion of added shear strength due to cohesion depends log-linearly on the OCR. We show that at shallow depths where OCR values can be high, overconsolidated clays can be stronger than pure or nearly pure quartz sediments, which are cohesionless under near-surface conditions. Our data also suggest that areas which have experienced significant unroofing due to previous mass movements are less likely to experience subsequent failure at shallow depths due to increased peak strength, and if failure occurs it is expected to be deeper where the OCR is lower. In seismically active areas, this is one potential explanation for the general observation of lower slope failure recurrence compared to rates expected from triggering due to local earthquakes.
Resumo:
In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.
Resumo:
This study presents a proposal of speed servomechanisms without the use of mechanical sensors (sensorless) using induction motors. A comparison is performed and propose techniques for pet rotor speed, analyzing performance in different conditions of speed and load. For the determination of control technique, initially, is performed an analysis of the technical literature of the main control and speed estimation used, with their characteristics and limitations. The proposed technique for servo sensorless speed induction motor uses indirect field-oriented control (IFOC), composed of four controllers of the proportional-integral type (PI): rotor flux controller, speed controller and current controllers in the direct and quadrature shaft. As the main focus of the work is in the speed control loop was implemented in Matlab the recursive least squares algorithm (RLS) for identification of mechanical parameters, such as moment of inertia and friction coefficient. Thus, the speed of outer loop controller gains can be self adjusted to compensate for any changes in the mechanical parameters. For speed estimation techniques are analyzed: MRAS by rotóricos fluxes MRAS by counter EMF, MRAS by instantaneous reactive power, slip, locked loop phase (PLL) and sliding mode. A proposition of estimation in sliding mode based on speed, which is performed a change in rotor flux observer structure is displayed. To evaluate the techniques are performed theoretical analyzes in Matlab simulation environment and experimental platform in electrical machinery drives. The DSP TMS320F28069 was used for experimental implementation of speed estimation techniques and check the performance of the same in a wide speed range, including load insertion. From this analysis is carried out to implement closed-loop control of sensorless speed IFOC structure. The results demonstrated the real possibility of replacing mechanical sensors for estimation techniques proposed and analyzed. Among these, the estimator based on PLL demonstrated the best performance in various conditions, while the technique based on sliding mode has good capacity estimation in steady state and robustness to parametric variations.
Resumo:
Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process
Resumo:
Toppling analysis of a precariously balanced rock (PBR) can provide insights into the nature of ground motion that has not occurred at that location in the past and, by extension, realistic constraints on peak ground motions for use in engineering design. Earlier approaches have targeted simplistic 2-D models of the rock or modeled the rock-pedestal contact using spring-damper assemblies that require re-calibration for each rock. These analyses also assume that the rock does not slide on the pedestal. Here, a method to model PBRs in three dimensions is presented. The 3-D model is created from a point cloud of the rock, the pedestal, and their interface, obtained using Terrestrial Laser Scanning (TLS). The dynamic response of the model under earthquake excitation is simulated using a rigid body dynamics algorithm. The veracity of this approach is demonstrated by comparisons against data from shake table experiments. Fragility maps for toppling probability of the Echo Cliff PBR and the Pacifico PBR as a function of various ground motion parameters, rock-pedestal interface friction coefficient, and excitation direction are presented. The seismic hazard at these PBR locations is estimated using these maps. Additionally, these maps are used to assess whether the synthetic ground motions at these locations resulting from scenario earthquakes on the San Andreas Fault are realistic (toppling would indicate that the ground motions are unrealistically high).
Resumo:
Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.
Resumo:
TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6–3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (–200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1–8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2–8.2 nm, 26–30 GPa, 0.3–0.4 and 2.1–4.8 × 10−6 mm3 N−1 m−1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1–3.7 nm, 41–45 GPa, 0.1–0.2 and 1.4–3.0 × 10−6 mm3 N−1 m−1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10−6 mm3 N−1 m−1).