836 resultados para Forward osmosis
Resumo:
To improve the quality of driving flows generated with detonation-driven shock tunnels operated in the forward-running mode, various detonation drivers with specially designed sections were examined. Four configurations of the specially designed section, three with different converging angles and one with a cavity ring, were simulated by solving the Euler equations implemented with a pseudo kinetic reaction model. From the first three cases, it is observed that the reflection of detonation fronts at the converging wall results in an upstream-traveling shock wave that can increase the flow pressure that has decreased due to expansion waves, which leads to improvement of the driving flow. The configuration with a cavity ring is found to be more promising because the upstream-traveling shock wave appears stronger and the detonation front is less overdriven. Although pressure fluctuations due to shock wave focusing and shock wave reflection are observable in these detonation-drivers, they attenuate very rapidly to an acceptable level as the detonation wave propagates downstream. Based on the numerical observations, a new detonation-driven shock tunnel with a cavity ring is designed and installed for experimental investigation. Experimental results confirm the conclusion drawn from numerical simulations. The generated driving flow in this shock tunnel could maintain uniformity for as long as 4 ms. Feasibility of the proposed detonation driver for high-enthalpy shock tunnels is well demonstrated.
Resumo:
Sequential Monte Carlo (SMC) methods are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. We propose a new SMC algorithm to compute the expectation of additive functionals recursively. Essentially, it is an on-line or "forward only" implementation of a forward filtering backward smoothing SMC algorithm proposed by Doucet, Godsill and Andrieu (2000). Compared to the standard \emph{path space} SMC estimator whose asymptotic variance increases quadratically with time even under favorable mixing assumptions, the non asymptotic variance of the proposed SMC estimator only increases linearly with time. We show how this allows us to perform recursive parameter estimation using an SMC implementation of an on-line version of the Expectation-Maximization algorithm which does not suffer from the particle path degeneracy problem.
Resumo:
11 p.
Resumo:
We consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called a forward-looking network formation scheme if, first, the probability that a link is created is positive if the discounted, expected gains to its two participants are positive, and if, second, the probability that a link is eliminated is positive if the discounted, expected gains to at least one of its two participants are positive. The main result is the existence, for all discount factors and all value functions, of a forward-looking network formation scheme. Furthermore, we can always nd a forward-looking network formation scheme such that (i) the allocation rule is component balanced and (ii) the transition probabilities increase in the di erence in payo s for the corresponding players responsible for the transition. We use this dynamic solution concept to explore the tension between e ciency and stability.
Resumo:
157 p.