959 resultados para Foot Joints
Resumo:
On yleisesti tiedossa, että väsyttävän kuormituksen alaisena olevat hitsatut rakenteet rikkoutuvat juuri hitsausliitoksista. Täyden tunkeuman hitsausliitoksia sisältävien rakenteiden asiantunteva suunnittelu janykyaikaiset valmistusmenetelmät ovat lähes eliminoineet väsymisvauriot hitsatuissa rakenteissa. Väsymislujuuden parantaminen tiukalla täyden tunkeuman vaatimuksella on kuitenkin epätaloudellinen ratkaisu. Täyden tunkeuman hitsausliitoksille asetettavien laatuvaatimuksien on määriteltävä selkeät tarkastusohjeet ja hylkäämisperusteet. Tämän diplomityön tarkoituksena oli tutkia geometristen muuttujien vaikutusta kuormaa kantavien hitsausliitosten väsymislujuuteen. Huomio kiinnitettiin pääasiassa suunnittelumuuttujiin, joilla on vaikutusta väsymisvaurioiden syntymiseen hitsauksen juuren puolella. Nykyiset määräykset ja standardit, jotka perustuvat kokeellisiin tuloksiin; antavat melko yleisiä ohjeita hitsausliitosten väsymismitoituksesta. Tämän vuoksi muodostettiin kokonaan uudet parametriset yhtälöt sallitun nimellisen jännityksen kynnysarvon vaihteluvälin, ¿¿th, laskemiseksi, jotta vältettäisiin hitsausliitosten juuren puoleiset väsymisvauriot. Lisäksi, jokaiselle liitostyypille laskettiin hitsin juuren puolen väsymisluokat (FAT), joita verrattiin olemassa olevilla mitoitusohjeilla saavutettuihin tuloksiin. Täydentäviksi referensseiksi suoritettiin useita kolmiulotteisia (3D) analyysejä. Julkaistuja kokeellisiin tuloksiin perustuvia tietoja käytettiin apuna hitsausliitosten väsymiskäyttäytymisen ymmärtämiseksi ja materiaalivakioiden määrittämiseksi. Kuormaa kantavien vajaatunkeumaisten hitsausliitosten väsymislujuus määritettiin käyttämällä elementtimenetelmää. Suurimman pääjännityksen kriteeriä hyödynnettiin murtumiskäyttäytymisen ennakoimiseksi. Valitulle hitsatulle materiaalille ja koeolosuhteille murtumiskäyttäytymistä mallinnettiin särön kasvunopeudella da/dN ja jännitysintensiteettikertoimen vaihteluvälillä, 'K. Paris:n yhtälön numeerinen integrointi suoritettiin FRANC2D/L tietokoneohjelmalla. Saatujen tulosten perusteella voidaan laskea FAT tutkittavassa tapauksessa. ¿¿th laskettiin alkusärön jännitysintensiteettikertoimen vaihteluvälin ja kynnysjännitysintensiteettikertoimen, 'Kth, perusteella. ¿Kth arvoa pienemmällä vaihteluvälillä särö ei kasva. Analyyseissäoletuksena oli hitsattu jälkikäsittelemätön liitos, jossa oli valmis alkusärö hitsin juuressa. Analyysien tulokset ovat hyödyllisiä suunnittelijoille, jotka tekevät päätöksiä koskien geometrisiä parametreja, joilla on vaikutusta hitsausliitosten väsymislujuuteen.
Resumo:
The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.
Resumo:
PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising the two. METHODS: We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions and/or functional assays. RESULTS: We identified eight probands with CHH with (n = 3; Kallmann syndrome) or without anosmia (n = 5) and SHFM, seven of whom (88%) harbor FGFR1 mutations. Of these seven, one individual is homozygous for p.V429E and six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, or p.L712P. All mutations were predicted by in silico analysis to cause loss of function. Probands with FGFR1 mutations have severe gonadotropin-releasing hormone deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was observed only in the patient with the homozygous p.V429E mutation; V429 maps to the fibroblast growth factor receptor substrate 2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of fibroblast growth factor receptor substrate 2α to FGFR1, thereby resulting in reduced mitogen-activated protein kinase signaling. CONCLUSION: FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM because the likelihood of a mutation increases from 10% in the general CHH population to 88% in these patients.Genet Med 17 8, 651-659.
Resumo:
The effective notch stress approach for the fatigue strength assessment of welded structures as included in the Fatigue Design Recommendation of the IIW requires the numerical analysis of the elastic notch stress in the weld toe and weld root which is fictitiously rounded with a radius of 1mm. The goal of this thesis work was to consider alternate meshing strategies when using the effective notch stress approach to assess the fatigue strength of load carrying partial penetration fillet-welded cruciform joints. In order to establish guidelines for modeling the joint and evaluating the results, various two-dimensional (2D) finite element analyses were carried out by systematically varying the thickness of the plates, the weld throat thickness, the degree of bending, and the shape and location of the modeled effective notch. To extend the scope of this work, studies were also carried out on the influence of
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
Diplomityössä kehitettiin harustetun 110 kV kannatuspylvään konsepti tuotteeksi. Pylväs on säänkestävästä teräksestä valmistettu putkipalkkirakenteinen I-pylväs. Tavoitteena oli suunnitella rakenteesta kokonaistaloudellisesti edullinen. Rakenteen suunnittelussa otettiin huomioon valmistus-, kuljetus- ja varastointi- sekä rakentamisnäkökohtia. Työssä perehdyttiin pylväsrakenteiden yksityiskohtiin, putkipalkkien liitosmenetelmiin ja pylvään jalan nivelöintiratkaisuihin. Säänkestävä rakennemateriaali otettiin huomioon rakennesuunnittelussa. Rakenteen lujuusteknisen suunnittelun apuna käytettiin epälineaarista elementtimenetelmää. Pylväsrakenteen käyttäytyminen mallinnettiin geometrisesti epälineaariseksi, ja liitosdetaljien analysointia varten kehitettiin epälineaarisia materiaalimalleja. Rakenteen värähtelykäyttäytyminen analysoitiin myös elementtimenetelmällä. Lopputuloksena saatiin aikaan pylväs, joka täyttää sille asetetut vaatimukset. Pylväs on helposti valmistettava, kuljetettava ja pystytettävä.
Resumo:
Foot-and-mouth disease (FMD) is one of the most feared diseases of livestock worldwide. Vaccination has been a very effective weapon in controlling the disease, however a number of concerns with the current vaccine including the inability of approved diagnostic tests to reliably distinguish vaccinated from infected animals and the need for high containment facilities for vaccine production, have limited its use during outbreaks in countries previously free of the disease. A number of FMD vaccine candidates have been tested and a replication-defective human adenovirus type 5 (Ad5) vector containing the FMDV capsid (P1-2A) and 3C protease coding regions has been shown to completely protect pigs against challenge with the homologous virus (FMDV A12 and A24). An Ad5-P1-2A+3C vaccine for FMDV O1 Campos (Ad5-O1C), however, only induced a low FMDV-specific neutralizing antibody response in swine potency tests. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully used to stimulate the immune response in vaccine formulations against a number of diseases, including HIV, hepatitis C and B. To attempt to improve the FMDV-specific immune response induced by Ad5-O1C, we inoculated swine with Ad5-O1C and an Ad5 vector containing the gene for porcine GM-CSF (pGM-CSF). However, in the conditions used in this trial, pGM-CSF did not improve the immune response to Ad5-O1C and adversely affected the level of protection of swine challenged with homologous FMDV.
Resumo:
This paper reports the occurrence and epidemiology of outbreaks of foot rot and other foot diseases in goats and sheep in the semiarid region of Paraíba, northeastern Brazil. Four farms were inspected for the presence of foot lesion in sheep and goats and for environmental conditions, general hygiene, pastures, and disease control measures. The prevalence of foot lesions was 19.41% (170/876) in sheep and 17.99% (52/289) in goats, ranging between 5.77% and 33.85% in different farms. Foot rot was the most common disease, affecting 12.1% of the animals examined (141/1165), but with significantly higher (p<0.05) prevalence in sheep (13.69%) than in goats (7.27%). The frequency of malignant foot rot was also significantly lower (p<0.05) in goats (9.53%) than in the sheep (40.83%). On one farm, Dorper sheep showed significantly higher (p<0.05) prevalence of foot rot (17.5%) than Santa Inês sheep (6.79%), and the number of digits affected was also higher in the former. Dichelobacter nodosus and Fusobacterium necrophorum were isolated from cases of foot rot. White line disease was found in 3.95% of the animals, sole ulcers in 1.29%, foot abscess in 1.03% and hoof overgrowth in 0.5%. The high rainfall at the time of occurrence, grazing in wetlands, clay soils with poor drainage, presence of numerous stony grounds, closure of the flocks in pens at night, and introduction of affected animals were considered predisposing factors for the occurrence of foot diseases.
Resumo:
Foot health is a part of overall health in every age group and its importance increases during ageing. Health care professionals are in a vital position for preventing foot health problems, and identifying and caring them in older people. Despite the rather high number of studies conducted in the field of foot health in older people, reliable and valid nurse-administered foot health assessment instruments seem to be lacking. By identifying foot health in older people, it is possible to develop nursing interventions to enhance safe, independent living at home. The purpose of this three-phase study was to develop an instrument to assess the level of foot health in older people and evaluate foot care practices from the perspective of older people themselves and nurses in home care. The ultimate goal is to prevent foot health problems by increasing the attention paid to older people’s feet and recognizing those foot health problems which need further care; thus not focus on different foot health problems. The study was conducted in different phases and contexts. In phase 1, a descriptive design with a literature review from the Medline (R) and CINAHL databases to explore foot health in older people and nurses’ role in foot health care and pre-post design intervention study in nursing home with nursing staff (n=16) and older residents (n=43) were conducted. In phase 2, a descriptive and explorative study design was employed to develop an instrument for assessing foot health in older people (N=651, n=309, response rate 47%) and explore the psychometrics of the instrument. The data were collected from sheltered housing and home care settings. Finally, in phase 3, descriptive and explorative as well as cross-sectional correlational survey designs were used to assess foot health and evaluate the foot self-care activities of older people (N=651, n=309, response rate 47%) and to describe foot care knowledge and caring activities of nurses (N=651, n=322, response rate 50%) in home care in Finland. To achieve this, the Foot Health Assessment Instrument (FHAI) developed in phase 2 was used; at the same time, this large sample also was used for the psychometric evaluation of the FHAI. The data analysis methods used in this study were content analysis, descriptive and inferential statistics including factor and multivariate analysis. Many long-term diseases can manifest in feet. Therefore, the FHAI, developed in this study consisted of items relating to skin and nail health, foot structure and foot pain. The FHAI demonstrated acceptable preliminary psychometric properties. A great deal of different foot health problems in older people were found of which edema, dry skin, thickened and discoloured toenails and hallux valgus were the most prevalent foot health problems. Moreover, many older people had difficulties in performing foot self-care. Nurses’ knowledge of foot care was insufficient and revealed a need for more information and continuing education in matters relating to foot care in older people. Instead, nurses’ foot care activities were mainly adequate, though the findings indicate the need for updating foot care activities to correspond with the evidence found in the field of foot care. Practical implications are presented for nursing practice, education and administration. In future, research should focus on developing interventions for older people and nurses to promote foot health in older people and to prevent foot health problems, as well as for further development of the FHAI.
Resumo:
Growing demand for stainless steel construction materials has increased the popularity of substitutive materials for austenitic stainless steels. The lean duplex grades have taken their place in building of structures exposed to corrosive environments. Since the duplex grades are relatively new materials, the current codes and norms do not fully cover the newest duplex grades. The joints tested in this thesis were designed and studied according to Eurocode 3, even though all the materials are not yet accepted to the standards. The main objective in this thesis was to determine the differences of the used materials in behaviour under loading at low temperatures. Tests in which the deformation and strength properties of the joints were determined were done at the temperature of -46°C, which is the requirement of temperature for structures designed according to Norsok standards. Results show that replacing the austenitic grade with the lean duplex grade is acceptable.
Resumo:
The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed