967 resultados para Flux variability analysis
Resumo:
Reliable detection of intrapartum fetal acidosis is crucial for preventing morbidity. Hypoxia-related changes of fetal heart rate variability (FHRV) are controlled by the autonomic nervous system. Subtle changes in FHRV that cannot be identified by inspection can be detected and quantified by power spectral analysis. Sympathetic activity relates to low-frequency FHRV and parasympathetic activity to both low- and high-frequency FHRV. The aim was to study whether intra partum fetal acidosis can be detected by analyzing spectral powers of FHRV, and whether spectral powers associate with hypoxia-induced changes in the fetal electrocardiogram and with the pH of fetal blood samples taken intrapartum. The FHRV of 817 R-R interval recordings, collected as a part of European multicenter studies, were analyzed. Acidosis was defined as cord pH ≤ 7.05 or scalp pH ≤ 7.20, and metabolic acidosis as cord pH ≤ 7.05 and base deficit ≥ 12 mmol/l. Intrapartum hypoxia increased the spectral powers of FHRV. As fetal acidosis deepened, FHRV decreased: fetuses with significant birth acidosis had, after an initial increase, a drop in spectral powers near delivery, suggesting a breakdown of fetal compensation. Furthermore, a change in excess of 30% of the low-to-high frequency ratio of FHRV was associated with fetal metabolic acidosis. The results suggest that a decrease in the spectral powers of FHRV signals concern for fetal wellbeing. A single measure alone cannot be used to reveal fetal hypoxia since the spectral powers vary widely intra-individually. With technical developments, continuous assessment of intra-individual changes in spectral powers of FHRV might aid in the detection of fetal compromise due to hypoxia.
Resumo:
In the present study, using noise-free simulated signals, we performed a comparative examination of several preprocessing techniques that are used to transform the cardiac event series in a regularly sampled time series, appropriate for spectral analysis of heart rhythm variability (HRV). First, a group of noise-free simulated point event series, which represents a time series of heartbeats, was generated by an integral pulse frequency modulation model. In order to evaluate the performance of the preprocessing methods, the differences between the spectra of the preprocessed simulated signals and the true spectrum (spectrum of the model input modulating signals) were surveyed by visual analysis and by contrasting merit indices. It is desired that estimated spectra match the true spectrum as close as possible, showing a minimum of harmonic components and other artifacts. The merit indices proposed to quantify these mismatches were the leakage rate, defined as a measure of leakage components (located outside some narrow windows centered at frequencies of model input modulating signals) with respect to the whole spectral components, and the numbers of leakage components with amplitudes greater than 1%, 5% and 10% of the total spectral components. Our data, obtained from a noise-free simulation, indicate that the utilization of heart rate values instead of heart period values in the derivation of signals representative of heart rhythm results in more accurate spectra. Furthermore, our data support the efficiency of the widely used preprocessing technique based on the convolution of inverse interval function values with a rectangular window, and suggest the preprocessing technique based on a cubic polynomial interpolation of inverse interval function values and succeeding spectral analysis as another efficient and fast method for the analysis of HRV signals
Resumo:
In order to assess the relative influence of age, resting heart rate (HR) and sedentary life style, heart rate variability (HRV) was studied in two different groups. The young group (YG) consisted of 9 sedentary subjects aged 15 to 20 years (YG-S) and of 9 nonsedentary volunteers (YG-NS) also aged 15 to 20. The elderly sedentary group (ESG) consisted of 16 sedentary subjects aged 39 to 82 years. HRV was assessed using a short-term procedure (5 min). R-R variability was calculated in the time-domain by means of the root mean square successive differences. Frequency-domain HRV was evaluated by power spectrum analysis considering high frequency and low frequency bands. In the YG the effort tolerance was ranked in a bicycle stress test. HR was similar for both groups while ESG showed a reduced HRV compared with YG. Within each group, HRV displayed a negative correlation with HR. Although YG-NS had better effort tolerance than YG-S, their HR and HRV were not significantly different. We conclude that HRV is reduced with increasing HR or age, regardless of life style. The results obtained in our short-term study agree with others of longer duration by showing that age and HR are the main determinants of HRV. Our results do not support the idea that changes in HRV are related to regular physical activity.
Resumo:
The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.
Resumo:
The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.
Resumo:
The objectives of this study were to evaluate and compare the use of linear and nonlinear methods for analysis of heart rate variability (HRV) in healthy subjects and in patients after acute myocardial infarction (AMI). Heart rate (HR) was recorded for 15 min in the supine position in 10 patients with AMI taking β-blockers (aged 57 ± 9 years) and in 11 healthy subjects (aged 53 ± 4 years). HRV was analyzed in the time domain (RMSSD and RMSM), the frequency domain using low- and high-frequency bands in normalized units (nu; LFnu and HFnu) and the LF/HF ratio and approximate entropy (ApEn) were determined. There was a correlation (P < 0.05) of RMSSD, RMSM, LFnu, HFnu, and the LF/HF ratio index with the ApEn of the AMI group on the 2nd (r = 0.87, 0.65, 0.72, 0.72, and 0.64) and 7th day (r = 0.88, 0.70, 0.69, 0.69, and 0.87) and of the healthy group (r = 0.63, 0.71, 0.63, 0.63, and 0.74), respectively. The median HRV indexes of the AMI group on the 2nd and 7th day differed from the healthy group (P < 0.05): RMSSD = 10.37, 19.95, 24.81; RMSM = 23.47, 31.96, 43.79; LFnu = 0.79, 0.79, 0.62; HFnu = 0.20, 0.20, 0.37; LF/HF ratio = 3.87, 3.94, 1.65; ApEn = 1.01, 1.24, 1.31, respectively. There was agreement between the methods, suggesting that these have the same power to evaluate autonomic modulation of HR in both AMI patients and healthy subjects. AMI contributed to a reduction in cardiac signal irregularity, higher sympathetic modulation and lower vagal modulation.
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
Monográfico con el título: 'Los mecanismos del cambio cognitivo'. Resumen basado en el de la publicación
Resumo:
We compare European Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans with satellite observations and the U.S. National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research 40-year reanalysis. When systematic differences in moisture between the observational and reanalysis data sets are removed, the NCEP data show excellent agreement with the observations while the ERA-15 variability exhibits remarkable differences. By forcing agreement between ERA-15 column water vapor and the observations, where available, by scaling the entire moisture column accordingly, the height-dependent moisture variability remains unchanged for all but the 550–850 hPa layer, where the moisture variability reduces significantly. Thus the excess variation of column moisture in ERA-15 appears to originate in this layer. The moisture variability provided by ERA-15 is not deemed of sufficient quality for use in the validation of climate models.
Resumo:
We use the third perihelion pass by the Ulysses spacecraft to illustrate and investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the potential effects of small-scale structure in the heliospheric field (giving fluctuations in the radial component on timescales smaller than 1 h) and kinematic time-of-flight effects of longitudinal structure in the solar wind flow. We show that the flux excess is explained by neither very small-scale structure (timescales < 1 h) nor by the kinematic “bunching effect” on spacecraft sampling. The observed flux excesses is, however, well explained by the kinematic effect of larger-scale (>1 day) solar wind speed variations on the frozen-in heliospheric field. We show that averaging over an interval T (that is long enough to eliminate structure originating in the heliosphere yet small enough to avoid cancelling opposite polarity radial field that originates from genuine sector structure in the coronal source field) is only an approximately valid way of allowing for these effects and does not adequately explain or account for differences between the streamer belt and the polar coronal holes.
Resumo:
The mobile component of a community inhabiting a submarine boulder scree/cliff was investigated at Lough Hyne, Ireland at dawn, midday, dusk and night over a 1-week period. Line transects (50 m) were placed in the infralittoral (6 m) and circumlittoral (18 m) zones and also the interface between these two zones (12 m). The dominant mobile fauna of this cliff consisted of echinoderms (6 species), crustaceans (10 species) and fish (23 species). A different component community was identified at each time/depth interval using Multi-Dimensional Scaling (MDS) even though both species diversity (Shannon-Wiener indices) and richness (number of species) remained constant. These changes in community composition provided indirect evidence for migration by these mobile organisms. However, little evidence was found for migration between different zones with the exception of the several wrasse species. These species were observed to spend the daytime foraging in the deeper zone, but returned to the upper zone at night presumably for protection from predators. For the majority of species, migration was considered to occur to cryptic habitats such as holes and crevices. The number of organisms declined during the night, although crustacean numbers peaked, while fish and echinoderms were most abundant during day, possibly due to predator-prey interactions. This submarine community is in a state of flux, whereby, community characteristics, including trophic and energetic relationships, varied over small temporal (daily) and spatial (m) scales.
Resumo:
The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises from peaks in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250 eV flux (integrated over pitch angle). Whether the peaks result from the compression there or are solar signatures of the coronal hole boundary, to which interfaces may map, is an open question. Suggestive of the latter, some cases show a displacement between the electron and magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much more quickly by suprathermal electrons compared to convected plasma signatures, the displacement may imply a shift in the coronal hole boundary through transport of open magnetic flux via interchange reconnection. If so, however, the fact that displacements occur in both directions and that the electron and field peaks in the superposed epoch analysis are nearly coincident indicate that any systematic transport expected from differential solar rotation is overwhelmed by a random pattern, possibly owing to transport across a ragged coronal hole boundary.
Resumo:
The mean state, variability and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere vortex, are examined using 2-dimensional moment analysis and Extreme Value Theory (EVT). The use of moments as an analysis to ol gives rise to information about the vortex area, centroid latitude, aspect ratio and kurtosis. The application of EVT to these moment derived quantaties allows the extreme variability of the vortex to be assessed. The data used for this study is ECMWF ERA-40 potential vorticity fields on interpolated isentropic surfaces that range from 450K-1450K. Analyses show that the most extreme vortex variability occurs most commonly in late January and early February, consistent with when most planetary wave driving from the troposphere is observed. Composites around sudden stratospheric warming (SSW) events reveal that the moment diagnostics evolve in statistically different ways between vortex splitting events and vortex displacement events, in contrast to the traditional diagnostics. Histograms of the vortex diagnostics on the 850K (∼10hPa) surface over the 1958-2001 period are fitted with parametric distributions, and show that SSW events comprise the majority of data in the tails of the distributions. The distribution of each diagnostic is computed on various surfaces throughout the depth of the stratosphere, and shows that in general the vortex becomes more circular with higher filamentation at the upper levels. The Northern Hemisphere (NH) and Southern Hemisphere (SH) vortices are also compared through the analysis of their respective vortex diagnostics, and confirm that the SH vortex is less variable and lacks extreme events compared to the NH vortex. Finally extreme value theory is used to statistically mo del the vortex diagnostics and make inferences about the underlying dynamics of the polar vortices.
Resumo:
This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.
Resumo:
Synoptic climatology relates the atmospheric circulation with the surface environment. The aim of this study is to examine the variability of the surface meteorological patterns, which are developing under different synoptic scale categories over a suburban area with complex topography. Multivariate Data Analysis techniques were performed to a data set with surface meteorological elements. Three principal components related to the thermodynamic status of the surface environment and the two components of the wind speed were found. The variability of the surface flows was related with atmospheric circulation categories by applying Correspondence Analysis. Similar surface thermodynamic fields develop under cyclonic categories, which are contrasted with the anti-cyclonic category. A strong, steady wind flow characterized by high shear values develops under the cyclonic Closed Low and the anticyclonic H–L categories, in contrast to the variable weak flow under the anticyclonic Open Anticyclone category.