897 resultados para Flip and Saddle-node Bifurcation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilising archival human breast cancer biopsy material we examined the stromal/epithelial interactions of several matrix metalloproteinases (MMPs) using in situ-RT-PCR (IS-RT-PCR). In breast cancer, the stromal/epithelial interactions that occur, and the site of production of these proteases, are central to understanding their role in invasive and metastatic processes. We examined MT1-MMP (MMP-14, membrane type-1-MMP), MMP-1 (interstitial collagenase) and MMP-3 (stromelysin-1) for their localisation profile in progressive breast cancer biopsy material (poorly differentiated invasive breast carcinoma (PDIBC), invasive breast carcinomas (IBC) and lymph node metastases (LNM)). Expression of MT1-MMP, MMP-1 and MMP-3 was observed in both the tumour epithelial and surrounding stromal cells in most tissue sections examined. MT1-MMP expression was predominantly localised to the tumour component in the pre-invasive lesions. MMP-1 gene expression was relatively well distributed between both tissue compartments, while MMP-3 demonstrated highest expression levels in the stromal tissue surrounding the epithelial tumour cells. The results demonstrate the ability to distinguish compartmental gene expression profiles using IS-RT-PCR. Further, we suggest a role for MT1-MMP in early tumour progression, expression of MMP-1 during metastasis and focal expression pattern of MMP-3 in areas of expansion. These expression profiles may provide markers for early breast cancer diagnoses and present potential therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LCC15-MB cell line was established from a femoral bone metastasis that arose in a 29-year-old woman initially diagnosed with an infiltrating ductal mammary adenocarcinoma. The tumor had a relatively high (8%) S-phase fraction and 1/23 positive lymph nodes (LN). Both the primary tumor and LN metastasis were positive for estrogen receptor (ER) and progesterone receptor (PgR), but lacked erbB2 expression. Approximately one year later, the patient presented with a 0.8 cm comedo-type intraductal mammary adenocarcinoma in the left breast that was negative for ER and PgR, but positive for erbB2. Thirty-five months after the initial diagnosis she was treated for acute skeletal metastasis, and stabilized with a hip replacement. At this time, tumor cells were removed from surplus involved bone, inoculated into cell culture, and developed into the LCC15-MB cell line. The bone metastasis was a poorly differentiated adenocarcinoma lacking ER, PgR, and erbB2, characteristics shared by the LCC15-MB cells, although ER can be re-expressed by treatment of the LCC15-MB cells for 5 days with 75 μM 5-aza-2'-deoxycytidine. The LCC15-MB cell line is tumorigenic when implanted subcutaneously in NCr nu/nu mice and produces long-bone metastases after intracardiac injection. Although the bone metastasis from which the LCC15-MB cell line was derived lacked vimentin (VIM) expression, the original primary tumor and lymph node metastasis were strongly VIM positive, as are LCC15-MB cells in vitro and in nude mice. The karyotype and isozyme profiles of LCC15-MB cells are consistent with its origin from a human female, with most chromosome counts in the hypertriploid range. Thirty-two marker chromosomes are present. These cells provide an in vitro/in vivo model in which to study the inter-relationships between ER, VIM, and bone metastasis in human breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of attachment) has been studied. The equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of attachment but employing a parametric differentiation technique instead of quasilinearization for saddle points of attachment. It is found that the effect of massive blowing rates is to move the viscous layer away from the surface. The effect of the variation of the density- viscosity product across the boundary layer is found to be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse flow as well as velocity overshoot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteadely laminar incompressible second-order boundary-layer flow at the stagnation point of a three-dimensional body has been studied for both nodal and saddle point regions. The effects of mass transfer and Prandtl number have been taken into account. The equations governing the flow have been solved numerically using an implicit finite-difference scheme. It has been found that the parameter characterizing the unsteadiness in the velocity of the free stream, the nature of the stagnation point, the mass transfer and Prandtl number strongly affect the second-order skin friction and heat transfer. The overall skin friction becomes less due to second-order effects but the heat transfer has the opposite behaviour. For large injection, the second-order skin-friction and heat-transfer results prevail over the first-order boundary layer results whereas for the case of large suction the behaviour is just the opposite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a comparative performance analysis of network architectures for beacon enabled Zigbee sensor clusters using the CSMA/CA MAC defined in the IEEE 802.15.4 standard, and organised as (i) a star topology, and (ii) a two-hop topology. We provide analytical models for obtaining performance measures such as mean network delay, and mean node lifetime. We find that the star topology is substantially superior both in delay performance and lifetime performance than the two-hop topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All the second-order boundary-layer effects on the unsteady laminar incompressible flow at the stagnation-point of a three-dimensional body for both nodal and saddle point regions have been studied. It has been assumed that the free-stream velocity, wall temperature and mass transfer vary arbitrarily with time. The effect of the Prandtl number has been taken into account. The partial differential equations governing the flow have been derived for the first time and then solved numerically unsteady free-stream velocity distributions, the nature of the using an implicit finite-difference scheme. It is found that the stagnation point and the mass transfer strongly affect the skin friction and heat transfer whereas the effects of the Prandtl number and the variation of the wall temperature with time are only on the heat transfer. The skin friction due to the combined effects of first- and second-order boundary layers is less than the skin friction due to, the first-order boundary layers whereas the heat transfer has the opposite behaviour. Suction increases the skin friction and heat transfer but injection does the opposite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of surface mass transfer velocities having normal, principal and transverse direction components (�vectored� suction and injection) on the steady, laminar, compressible boundary layer at a three-dimensional stagnation point has been investigated both for nodal and saddle points of attachment. The similarity solutions of the boundary layer equations were obtained numerically by the method of parametric differentiation. The principal and transverse direction surface mass transfer velocities significantly affect the skin friction (both in the principal and transverse directions) and the heat transfer. Also the inadequacy of assuming a linear viscosity-temperature relation at low-wall temperatures is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage detection by measuring and analyzing vibration signals in a machine component is an established procedure in mechanical and aerospace engineering. This paper presents vibration signature analysis of steel bridge structures in a nonconventional way using artificial neural networks (ANN). Multilayer perceptrons have been adopted using the back-propagation algorithm for network training. The training patterns in terms of vibration signature are generated analytically for a moving load traveling on a trussed bridge structure at a constant speed to simulate the inspection vehicle. Using the finite-element technique, the moving forces are converted into stationary time-dependent force functions in order to generate vibration signals in the structure and the same is used to train the network. The performance of the trained networks is examined for their capability to detect damage from unknown signatures taken independently at one, three, and five nodes. It has been observed that the prediction using the trained network with single-node signature measurement at a suitability chosen location is even better than that of three-node and five-node measurement data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The micropropagation protocol for Phyllanthus amarus, an important medicinal herb used widely for the treatment of hepatitis in ethnomedicinal systems, was standardized with shoot tip and single node explants. Materials and Methods: The micropropagation was carried out for the hyperproducing ecotype (phyllanthin content 463.828 ppm; hypophyllanthin content: 75.469 ppm) collected from Aanaikatti, Coimbatore, and grown in mist chamber, CPMB, TNAU. For micropropagation studies, the leaves were trimmed off and the shoot tips (6 mm long) and nodal segments (single node) were used for initiation. Results: Shoot tips and single node explants gave a maximum of 6.00 and 7.00 multiple shoots per explant with Benzyl Amino Purine (BAP) (1.0mg/L mg/L). Upon subculturing, a shoot length of around 7 cm with an average of eight internodes per shoot was observed after 20 days in the elongation medium supplemented with BAP (0.2 mg/Lmg/L) and Indole Acetic Acid (IAA) (2.0 mg/L). Seven to ten adventitious roots developed when the elongated microshoots were cultured in half strength MS medium with Indole Butyric Acid (IBA) (2.0 mg/Lmg/L) and NAA (1.0 mg/L mg/L) in 15-20 days after transfer. The rooted shoots acclimatized successfully to field conditions. Conclusion: A method for successful micropropagation of the valuable medicinal plant was established which will provide a better source for continuous supply of plants for manufacturing drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study zero-sum risk-sensitive stochastic differential games on the infinite horizon with discounted and ergodic payoff criteria. Under certain assumptions, we establish the existence of values and saddle-point equilibria. We obtain our results by studying the corresponding Hamilton-Jacobi-Isaacs equations. Finally, we show that the value of the ergodic payoff criterion is a constant multiple of the maximal eigenvalue of the generators of the associated nonlinear semigroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.