987 resultados para Fisica da materia condensada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pt nanocontacts, like those formed in mechanically controlled break junctions, are shown to develop spontaneous local magnetic order. Our density functional calculations predict that a robust local magnetic order exists in the atoms presenting low coordination, i.e., those forming the atom-sized neck. We thus find that the electronic transport can be spin polarized, although the net value of the conductance still agrees with available experimental information. Experimental implications of the formation of this new type of nanomagnet are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes makes them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance properties of six different types of molecules by suspending individual molecules between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metalliclike conductivity, the individual molecular signature is well expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomic contacts made of ferromagnetic metals present zero-bias anomalies in the differential conductance due to the Kondo effect. These systems provide a unique opportunity to perform a statistical analysis of the Kondo parameters in nanostructures since a large number of contacts can be easily fabricated using break-junction techniques. The details of the atomic structure differ from one contact to another so a large number of different configurations can be statistically analyzed. Here we present such a statistical analysis of the Kondo effect in atomic contacts made from the ferromagnetic transition metals Ni, Co, and Fe. Our analysis shows clear differences between materials that can be understood by fundamental theoretical considerations. This combination of experiments and theory allows us to extract information about the origin and nature of the Kondo effect in these systems and to explore the influence of geometry and valence in the Kondo screening of atomic-sized nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanometer-sized metallic necks have the unique ability to sustain extreme uniaxial loads (about 20 times greater than the bulk material). We present an experimental and theoretical study of the electronic transport properties under such extreme conditions. Conductance measurements on gold and aluminum necks show a strikingly different behavior: While gold shows the expected conductance decrease with increasing elastic elongation of the neck, aluminum necks behave in the opposite way. We have performed first-principles electronic-structure calculations which reproduce this behavior, showing that it is an intrinsic property of the bulk band structure under high uniaxial strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate both experimentally and theoretically the evolution of conductance in metallic one-atom contacts under elastic deformation. While simple metals like Au exhibit almost constant conductance plateaus, Al and Pb show inclined plateaus with positive and negative slopes. It is shown how these behaviors can be understood in terms of the orbital structure of the atoms forming the contact. This analysis provides further insight into the issue of conductance quantization in metallic contacts revealing important aspects of their atomic and electronic structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the fracture of nanocontacts gold spontaneously forms freely suspended chains of atoms, which is not observed for the isoelectronic noble metals Ag and Cu. Au also differs from Ag and Cu in forming reconstructions at its low-index surfaces. Using mechanically controllable break junctions we show that all the 5d metals that show similar reconstructions (Ir, Pt, and Au) also form chains of atoms, while both properties are absent in the 4d neighbor elements (Rh, Pd, and Ag), indicating a common origin for these two phenomena. A competition between s and d bonding is proposed as an explanation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electronic transport at finite voltages in free-standing gold atomic chains of up to seven atoms in length is studied at low temperatures using a scanning tunneling microscope. The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is nondissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a scanning tunnel microscope or mechanically controllable break junctions atomic contacts for Au, Pt, and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large number of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on the numbers of atoms forming the chain being even or odd. This behavior is not only observed for the monovalent metal Au, as was predicted, but is also found for the other chain-forming metals, suggesting it to be a universal feature of atomic wires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transition from tunneling to metallic contact between two surfaces does not always involve a jump, but can be smooth. We have observed that the configuration and material composition of the electrodes before contact largely determine the presence or absence of a jump. Moreover, when jumps are found preferential values of conductance have been identified. Through a combination of experiments, molecular dynamics, and first-principles transport calculations these conductance values are identified with atomic contacts of either monomers, dimers, or double-bond contacts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent years have shown steady progress towards molecular electronics, in which molecules form basic components such as switches, diodes and electronic mixers. Often, a scanning tunnelling microscope is used to address an individual molecule, although this arrangement does not provide long-term stability. Therefore, metal–molecule–metal links using break-junction devices have also been explored; however, it is difficult to establish unambiguously that a single molecule forms the contact. Here we show that a single hydrogen molecule can form a stable bridge between platinum electrodes. In contrast to results for organic molecules, the bridge has a nearly perfect conductance of one quantum unit, carried by a single channel. The hydrogen bridge represents a simple test system in which to understand fundamental transport properties of single-molecule devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the metals Au, Pt and Ir it is possible to form freely suspended monatomic chains between bulk electrodes. The atomic chains sustain very large current densities, but finally fail at high bias. We investigate the breaking mechanism, that involves current-induced heating of the atomic wires and electromigration forces. We find good agreement of the observations for Au based on models due to Todorov and co-workers. The high-bias breaking of atomic chains for Pt can also be described by the models, although here the parameters have not been obtained independently. In the limit of long chains the breaking voltage decreases inversely proportional to the length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrochemical methods have recently become an interesting tool for fabricating and characterizing nanostructures at room temperature. Simplicity, low cost and reversibility are some of the advantages of this technique that allows to work at the nanoscale without requiring sophisticated instrumentation. In our experimental setup, we measure the conductance across a nanocontact fabricated either by dissolving a macroscopic gold wire or by depositing gold in between two separated gold electrodes. We have achieved a high level of control on the electrochemical fabrication of atomic-sized contacts in gold. The use of electrochemistry as a reproducible technique to prepare nanocontacts will open several possibilities that are not feasible with other methodologies. It involves, also, the possibility of reproducing experiments that today are made by more expensive, complicated or irreversible methods. As example, we show here a comparison of the results when looking for shell effects in gold nanocontacts with those obtained by other techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop a theory to calculate exciton binding energies of both two- and three-dimensional spin polarized exciton gases within a mean field approach. Our method allows the analysis of recent experiments showing the importance of the polarization and intensity of the excitation light on the exciton luminescence of GaAs quantum wells. We study the breaking of the spin degeneracy observed at high exciton density (5×1010 cm2). Energy level splitting between spin +1 and spin -1 is shown to be due to many-body interexcitonic exchange while the spin relaxation time is controlled by intraexciton exchange. © 1996 The American Physical Society.