900 resultados para Fire damp.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Las Herrerias volcano (Bolanos de Calatrava, Campo de Calatrava Volcanic Field) is characterized by the great amount and variety of fire-fountain fed deposits. All these deposits are compositionally similar, being constituted by magnesium-rich (MgO = 11.58-4.19%), aluminium-poor (Al2O3 = 9.64-10.99%) highly sodic (Na2O = 2.24-3.81%) melanephelinites, with high contents in rare earth-elements (10x-200x chondrite), particularly in light-rare earth elements with respect to the heavy ones [(La/Lu)(N) = 32-35]. Contrary to the equivalent melanephelinites of this volcanic field, the relatively low contents in Ni (233-286 ppm), Cr (393-520 ppm) and magnesium number (Mg* = 45-54) indicate that these rocks do not correspond with primary melts. On the other hand, the variable distribution of clinopyroxene in the magma during eruption would be responsible for the slight compositional differences observed in the studied samples. Finally, we argue that these fire fountains were developed in a continental intraplate setting.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Though knowledge of fire occurrence and weather pattern relationships has been used for many years by land managers in, for instance, prescribed fire planning, understanding of the relationship between Holocene climates and fire is just beginning to be investigated. We are investigating this relationship in a major mountain range in California, examining charcoal and pollen content in sediments of montane meadows to compare paleo-fire and paleo-vegetation (thus, climate) sequences for the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering behavior is studied in a model of integrate-and-fire oscillators with excitatory pulse coupling. When considering a population of identical oscillators, the main result is a proof of global convergence to a phase-locked clustered behavior. The robustness of this clustering behavior is then investigated in a population of nonidentical oscillators by studying the transition from total clustering to the absence of clustering as the group coherence decreases. A robust intermediate situation of partial clustering, characterized by few oscillators traveling among nearly phase-locked clusters, is of particular interest. The analysis complements earlier studies of synchronization in a closely related model. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper explores the influence of room geometry on the overturning of smoke owing to a centrally located floor fire, and examines the implications on smoke filling times. The focus is on presenting practical design guidelines based on the theoretical predictions of the model of Kaye and Hunt. An engineering platform is developed for the prediction of smoke filling times, and a rational basis is provided by way of which smoke behaviour can be specified for simple room designs. The time taken for smoke to fill a room to a given height is critically affected by the room aspect ratio and the characteristic size of the buoyancy source. At large times, taller (small aspect ratio) rooms are shown to fill with smoke at a faster rate than wide (large aspect ratio) rooms owing to large-scale overturning and engulfing of ambient air during the initial transients. Larger area sources of buoyancy also decrease significantly the smoke filling times, with important implications for fire and smoke safety design. Simplified design curves incorporating the main findings have been developed for use as a tool by practising fire-safety engineers.