969 resultados para Finite Simple Groups
Resumo:
This paper presents and discusses a social justice strategy that may progress inclusion in schools. The framework for this strategy is grounded in the theoretical discussions by Nancy Fraser and Trevor Gale about distributive, redistributive, and recognitive models of social justice. None of these theoretical frameworks, however, in themselves, offer a clear way forward for marginalised and misrecognised groups, such as disabled children, who need both educational resources and recognition in inclusive classrooms. The authors propose, however, that the work of Fraser and Gale combines into a social justice strategy, which consists of three elements (agency, competency, and diversity, or ‘a, c, d’) that can lead to inclusion. When disabled children are provided with the opportunity to exercise their agency, demonstrate their competence, and transform and affirm notions of diversity, then inclusion is more likely to occur in the classroom. Data from two research projects are presented using this framework to illustrate this argument, and the proposed ‘a, c, d’ social justice strategy towards inclusion.
Resumo:
A simple and efficient synthesis of a novel series of ionic liquids bearing nucleophilic (Me2N) and non-nucleophilic base ((Pr2N)-Pr-i) functionalities is described. The non-nucleophilic base functionality resembles the structure of the Hunig's base (N, N-diisopropylethylamine), which has been used widely in organic synthesis. A qualitative measure of the basicity of these ionic liquids is presented by utilising their interaction with universal indicator. The basicity of these ionic liquids was found to be dependent on the amine tether and choice of linker between the two nitrogen centres. The relative base strength of these ionic liquids was also probed by using them as catalysts in the Heck and Knoevenagel reactions.
Resumo:
The authors have recently described a cold-formed steel portal framing system in which simple bolted moment-connections, formed through brackets, were used for the eaves and apex joints. Such connections, however, cannot be considered as rigid because of localised in-plane elongation of the bolt-holes caused by bearing against the bolt-shanks. To therefore predict the initial stiffness of such connections, it is necessary to know the initial bolt-hole elongation stiffness k(b). In this paper, a finite element-solid idealisation of a bolted lap joint in shear will be described that can be used to determine k(b); the results obtained are validated against experimental data. A beam idealisation of a cold-formed steel bolted moment-connection is then described, in which spring elements are used to idealise the rotational flexibility of the bolt-groups resulting from bolt-hole elongation: Using the value of k(b) in the beam idealisation, the deflections predicted are shown to be similar to those measured experimentally in laboratory tests conducted on the apex joint of a cold-formed steel portal frame. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A simple linear beam idealization of a cold-formed steel portal frame is presented in which beam elements are used to idealize the column and rafter members, and rotational spring elements are used to represent the rotational flexibility of the joints. In addition, the beam idealization takes into account the finite connection length of the joints. Deflections predicted using the beam idealization are shown to be comparable to deflections obtained from both a linear finite element shell idealization and full-scale laboratory tests. Using the beam idealization, deflections under rafter load are divided into three components: Deflection due to flexure of the column and rafter members, deflection due to bolt-hole elongation, and deflection due to in-plane bracket deformation. Of these deflection components, the deflection due to bolt-hole elongation is the most significant and cannot, therefore, be ignored. Using the beam idealization, engineers can analyze and design cold-formed steel portal frames, including making appropriate allowances for connection effects, without the need to resort to expensive finite element shell analysis.
Resumo:
The alkoxylation of a-pinene was carried out over poly(vinyl alcohol) containing sulfonic acid groups, as catalyst. The main product of a-pinene alkoxylation was a-terpinyl methyl ether being also formed bornyl methyl ether, fenchyl methyl ether, limonene and terpinolene as by-products. The absorption band at 1037 cm-1 in the FTIR spectrum of PVA_SSA40 (PVA membrane containing 40% of –OH groups esterified with SSA) which does not appear in the spectrum of PVA, indicates the presence of the sulfonic acid groups. The catalytic activity of PVA with sulfonic acid groups increases when the amount of sulfosuccinic acid used in the polymer crosslinking is increased from 5% to 40%. However, when the crosslinking degree increases from 20% to 40%, the conversion of a-pinene increases only slightly. Good values of selectivity to a-terpinyl methyl ether were obtained over poly(vinyl alcohol) with sulfonic acid groups. A simple kinetic model, which fits experimental concentration data quite well, was developed.
Resumo:
This paper aims to provide a model that allows BPI to measure the credit risk, through its rating scale, of the subsidiaries included in the corporate groups who are their clients. This model should be simple enough to be applied in practice, accurate, and must give consistent results in comparison to what have been the ratings given by the bank. The model proposed includes operational, strategic, and financial factors and ends up giving one of three results: no support, partial support, or full support from the holding to the subsidiary, and each of them translates in adjustments in each subsidiary’s credit rating. As it would be expectable, most of the subsidiaries should have the same credit rating of its parent company.
Resumo:
Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.
Resumo:
Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres.
Resumo:
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <
Resumo:
A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.
Resumo:
Analysis by reduction is a method used in linguistics for checking the correctness of sentences of natural languages. This method is modelled by restarting automata. Here we study a new type of restarting automaton, the so-called t-sRL-automaton, which is an RL-automaton that is rather restricted in that it has a window of size 1 only, and that it works under a minimal acceptance condition. On the other hand, it is allowed to perform up to t rewrite (that is, delete) steps per cycle. We focus on the descriptional complexity of these automata, establishing two complexity measures that are both based on the description of t-sRL-automata in terms of so-called meta-instructions. We present some hierarchy results as well as a non-recursive trade-off between deterministic 2-sRL-automata and finite-state acceptors.
Resumo:
Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large classes of dihedral and quaternion groups.