992 resultados para Finite Field
Resumo:
We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics used in previous studies of the model. The change in the dynamics yields a significant suppression of coercivity, but the distribution of avalanches (in number and size) stays remarkably similar, except for the largest ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermodynamic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics does not modify the universality class of the disorder-induced phase transition.
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.
Resumo:
We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.
Resumo:
We study numerically the out-of-equilibrium dynamics of the hypercubic cell spin glass in high dimensionalities. We obtain evidence of aging effects qualitatively similar both to experiments and to simulations of low-dimensional models. This suggests that the Sherrington-Kirkpatrick model as well as other mean-field finite connectivity lattices can be used to study these effects analytically.
Resumo:
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.
Resumo:
We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.
Resumo:
Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).
Accurate Hartree-Fock-Slater calculations on small diatomic molecules with the finite-element method
Resumo:
We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.
Resumo:
This paper investigates finite-stretching corrections to the classical Milner-Witten-Cates theory for semi-dilute polymer brushes in a good solvent. The dominant correction to the free energy originates from an entropic repulsion caused by the impenetrability of the grafting surface, which produces a depletion of segments extending a distance $\mu \propto L^{-1}$ from the substrate, where $L$ is the classical brush height. The next most important correction is associated with the translational entropy of the chain ends, which creates the well-known tail where a small population of chains extend beyond the classical brush height by a distance $\xi \propto L^{-1/3}$. The validity of these corrections is confirmed by quantitative comparison with numerical self-consistent field theory.
Resumo:
In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.
Resumo:
The self-consistent field theory (SCFT) introduced by Helfand for diblock copolymer melts is expected to converge to the strong-segregation theory (SST) of Semenov in the asymptotic limit, $\chi N \rightarrow \infty$. However, past extrapolations of the lamellar/cylinder and cylinder/sphere phase boundaries, within the standard unit-cell approximation, have cast some doubts on whether or not this is actually true. Here we push the comparison further by extending the SCFT calculations to $\chi N = 512,000$, by accounting for exclusion zones in the coronae of the cylindrical and spherical unit cells, and by examining finite-segregation corrections to SST. In doing so, we provide the first compelling evidence that SCFT does indeed reduce to SST.
Resumo:
An efficient numerical self-consistent field theory (SCFT) algorithm is developed for treating structured polymers on spherical surfaces. The method solves the diffusion equations of SCFT with a pseudospectral approach that combines a spherical-harmonics expansion for the angular coordinates with a modified real-space Crank–Nicolson method for the radial direction. The self-consistent field equations are solved with Anderson-mixing iterations using dynamical parameters and an alignment procedure to prevent angular drift of the solution. A demonstration of the algorithm is provided for thin films of diblock copolymer grafted to the surface of a spherical core, in which the sequence of equilibrium morphologies is predicted as a function of diblock composition. The study reveals an array of interesting behaviors as the block copolymer pattern is forced to adapt to the finite surface area of the sphere.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
EVENT has been used to examine the effects of 3D cloud structure, distribution, and inhomogeneity on the scattering of visible solar radiation and the resulting 3D radiation field. Large eddy simulation and aircraft measurements are used to create realistic cloud fields which are continuous or broken with smooth or uneven tops. The values, patterns and variance in the resulting downwelling and upwelling radiation from incident visible solar radiation at different angles are then examined and compared to measurements. The results from EVENT confirm that 3D cloud structure is important in determining the visible radiation field, and that these results are strongly influenced by the solar zenith angle. The results match those from other models using visible solar radiation, and are supported by aircraft measurements of visible radiation, providing confidence in the new model.