726 resultados para Fault-tolerant computing
Resumo:
Topological quantum error correction codes are currently among the most promising candidates for efficiently dealing with the decoherence effects inherently present in quantum devices. Numerically, their theoretical error threshold can be calculated by mapping the underlying quantum problem to a related classical statistical-mechanical spin system with quenched disorder. Here, we present results for the general fault-tolerant regime, where we consider both qubit and measurement errors. However, unlike in previous studies, here we vary the strength of the different error sources independently. Our results highlight peculiar differences between toric and color codes. This study complements previous results published in New J. Phys. 13, 083006 (2011).
Resumo:
A novel open-winding brushless doubly-fed generator (BDFG) system with two two-level bidirectional converters is proposed. This topology is equivalent to a three-level bidirectional converter connected to the typical BDFG, but solves the unbalanced-voltage-division problem of DC capacitor in the three-level converter, and has lower converter capacity, more flexible control mode, and better fault-tolerant ability. The direct power control (DPC) based on the twelve sections is adopted to implement the power tracking of the open-winding BDFG system, which is compared with the typical BDFG DPC system based on the six and twelve sections to verify the advantages of the proposed scheme.
Resumo:
In a previous paper we solved an open problem named as the three disjoint path problem on honeycomb meshes. In this paper we extend the technique used to solve the related problem on honeycomb tori. The result gives the minimum possible length of the longest of any three disjoint paths between two given nodes in a torus. The problem has practical benefits in the fault tolerant aspects of interconnection topologies.
Resumo:
This thesis presents approximation algorithms for some NP-Hard combinatorial optimization problems on graphs and networks; in particular, we study problems related to Network Design. Under the widely-believed complexity-theoretic assumption that P is not equal to NP, there are no efficient (i.e., polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient algorithms for such problems, it is necessary to consider approximate solutions: An approximation algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the problem, finds a solution whose value is guaranteed to be within a multiplicative factor of the value of an optimal solution to that instance. We attempt to design algorithms for which this factor, referred to as the approximation ratio of the algorithm, is as small as possible. The field of Network Design comprises a large class of problems that deal with constructing networks of low cost and/or high capacity, routing data through existing networks, and many related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices u,v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or edges leaves u and v connected. We focus on building networks that are highly connected, meaning that even if a small number of edges and nodes fail, the remaining nodes will still be able to communicate. A brief description of some of our results is given below. We study the problem of building 2-vertex-connected networks that are large and have low cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k) approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains. This pruning algorithm is simple and efficient, and is likely to find additional applications. Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity problems. We develop an algorithm that, given a graph with some vertices marked as terminals, significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals; in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many trees that each span a given terminal set, while being disjoint on edges and non-terminal vertices; such problems have applications in VLSI design and other areas. We also use this reduction algorithm to analyze simple algorithms for single-sink network design problems with high vertex-connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a given set of terminals to a common sink. We study similar problems in which different types of links, of varying capacities and costs, can be used to connect nodes; assuming there are economies of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth to simultaneously support flow from each terminal to the common sink along many vertex-disjoint paths. We further investigate capacitated network design, where edges may have arbitrary costs and capacities. Given a connectivity requirement R_uv for each pair of vertices u,v, the goal is to find a low-cost network which, for each uv, can support a flow of R_uv units of traffic between u and v. We study several special cases of this problem, giving both algorithmic and hardness results. In addition to Network Design, we consider certain Traveling Salesperson-like problems, where the goal is to find short walks that visit many distinct vertices. We give a (2 + epsilon)-approximation for Orienteering in undirected graphs, achieving the best known approximation ratio, and the first approximation algorithm for Orienteering in directed graphs. We also give improved algorithms for Orienteering with time windows, in which vertices must be visited between specified release times and deadlines, and other related problems. These problems are motivated by applications in the fields of vehicle routing, delivery and transportation of goods, and robot path planning.
Resumo:
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.
Resumo:
Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.
Resumo:
While fault-tolerant quantum computation might still be years away, analog quantum simulators offer a way to leverage current quantum technologies to study classically intractable quantum systems. Cutting edge quantum simulators such as those utilizing ultracold atoms are beginning to study physics which surpass what is classically tractable. As the system sizes of these quantum simulators increase, there are also concurrent gains in the complexity and types of Hamiltonians which can be simulated. In this work, I describe advances toward the realization of an adaptable, tunable quantum simulator capable of surpassing classical computation. We simulate long-ranged Ising and XY spin models which can have global arbitrary transverse and longitudinal fields in addition to individual transverse fields using a linear chain of up to 24 Yb+ 171 ions confined in a linear rf Paul trap. Each qubit is encoded in the ground state hyperfine levels of an ion. Spin-spin interactions are engineered by the application of spin-dependent forces from laser fields, coupling spin to motion. Each spin can be read independently using state-dependent fluorescence. The results here add yet more tools to an ever growing quantum simulation toolbox. One of many challenges has been the coherent manipulation of individual qubits. By using a surprisingly large fourth-order Stark shifts in a clock-state qubit, we demonstrate an ability to individually manipulate spins and apply independent Hamiltonian terms, greatly increasing the range of quantum simulations which can be implemented. As quantum systems grow beyond the capability of classical numerics, a constant question is how to verify a quantum simulation. Here, I present measurements which may provide useful metrics for large system sizes and demonstrate them in a system of up to 24 ions during a classically intractable simulation. The observed values are consistent with extremely large entangled states, as much as ~95% of the system entangled. Finally, we use many of these techniques in order to generate a spin Hamiltonian which fails to thermalize during experimental time scales due to a meta-stable state which is often called prethermal. The observed prethermal state is a new form of prethermalization which arises due to long-range interactions and open boundary conditions, even in the thermodynamic limit. This prethermalization is observed in a system of up to 22 spins. We expect that system sizes can be extended up to 30 spins with only minor upgrades to the current apparatus. These results emphasize that as the technology improves, the techniques and tools developed here can potentially be used to perform simulations which will surpass the capability of even the most sophisticated classical techniques, enabling the study of a whole new regime of quantum many-body physics.
Resumo:
This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
It is imperative to accept that failures can and will occur, even in meticulously designed distributed systems, and design proper measures to counter those failures. Passive replication minimises resource consumption by only activating redundant replicas in case of failures, as typically providing and applying state updates is less resource demanding than requesting execution. However, most existing solutions for passive fault tolerance are usually designed and configured at design time, explicitly and statically identifying the most critical components and their number of replicas, lacking the needed flexibility to handle the runtime dynamics of distributed component-based embedded systems. This paper proposes a cost-effective adaptive fault tolerance solution with a significant lower overhead compared to a strict active redundancy-based approach, achieving a high error coverage with the minimum amount of redundancy. The activation of passive replicas is coordinated through a feedback-based coordination model that reduces the complexity of the needed interactions among components until a new collective global service solution is determined, improving the overall maintainability and robustness of the system.
Resumo:
Der Beitrag beschreibt die Ein- und Durchführung einer Server-basierten Computerinfrastruktur in einer Universitätsbibliothek. Beschrieben wird das so genannte MetaFrame-DV-Konzept der Universitätsbibliothek Kassel, das das dortige Informationsmanagement in den letzten vier Jahren initiiert, konzipiert und umgesetzt hat. Hierbei werden nunmehr nicht mehr nur Applikationsserver z.B. für das CD-Angebot eingesetzt, sondern sämtliche ca. 200 Mitarbeiter- und Funktionsarbeitsplätze über eine Citrix MetaFrame-Installation serverseitig betreut. Besonderes Augenmerk gilt in diesem Beitrag der Konfiguration, der praktischen Administration und den täglichen Arbeitsbedingungen an den Bibliotheksmitarbeiterarbeitsplätzen.
Resumo:
Processor virtualization for process migration in distributed parallel computing systems has formed a significant component of research on load balancing. In contrast, the potential of processor virtualization for fault tolerance has been addressed minimally. The work reported in this paper is motivated towards extending concepts of processor virtualization towards ‘intelligent cores’ as a means to achieve fault tolerance in distributed parallel computing systems. Intelligent cores are an abstraction of the hardware processing cores, with the incorporation of cognitive capabilities, on which parallel tasks can be executed and migrated. When a processing core executing a task is predicted to fail the task being executed is proactively transferred onto another core. A parallel reduction algorithm incorporating concepts of intelligent cores is implemented on a computer cluster using Adaptive MPI and Charm ++. Preliminary results confirm the feasibility of the approach.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.