993 resultados para Fatigue Damage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fretting fatigue occurs when the contact surfaces of two components undergo small oscillatory movement while they are subjected to a clamping force. A cyclic external load gives rise to the early initiation of fatigue cracks, thus reducing their service life. In this paper, the fretting fatigue behaviour of commercially pure titanium flat samples (1.5 mm thick) is evaluated. A fretting device composed of a frame, load cell, and two screw-mounted cylindrical fretting pads with convex extremities was built and set to a servo-hydraulic testing machine. The fatigue tests were conducted under load control at a frequency of 10 Hz and stress ratio R = 0.1, with various contact load values applied to the fretting pads. Additional tests under inert environment allowed assessing the role of oxidation on the wear debris formation. The fracture surfaces and fretting scars were analysed via scanning electron microscopy in order to evaluate the surface damage evolution and its effect on the fatigue crack features. The effect of the fretting condition on the S-N curve of the material in the range of 10(4)-10(6) cycles is described. Fatigue crack growth calculations allowed estimating the crack initiation and propagation lives under fretting conditions. The effect of the fretting condition in fatigue life is stronger for the lower values of cyclic stress and does not seem to depend on the contact loading value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delamination or crack propagation between plies is a critical issue for structural composites. In viewing this issue and the large application of woven fabrics in structural applications, especially the ones that requires high drapeability to be preformed in a RTM mold cavity such as the asymmetric ones, e.g HS series, this research aimed in dynamically testing the carbon fiber 5HS/RTM6 epoxy composites under opening mode using DCB set up in order to investigate the crack growth rate behavior in an irregular surface produced by the fabric waviness. The evaluation of the energy involved in each crack increment was based on the Irwin-Kies equation using compliance beam theory. The tests were conducted at constant stress ratio of R=0.1 with displacement control, frequency of 10 Hz, in accordance to ASTM E647-00 for measurement of crack growth rate. The results showed large scatter when compared to unidirectional carbon fiber composites due to damage accumulation at the fill tows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural component failures due to cyclic loading are associated to surface damage of materials and its interaction with environment. Fatigue failure occurs with stresses below the yield strength of each material and is a result of crack initiation and propagation. In aeronautical components is an important parameter to be considered in project, as well as the corrosion and wear resistance. Thermally sprayed HVOF coatings have been considered to replace galvanic chromium deposits with comparable performance for wear and corrosion resistance. The aim of present research is to study the influence of WC-13Co-4Cr applied by HVOF, on the axial fatigue strength of 15-5 PH stainless steel. The shot peening treatment was used to restore fatigue performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate -entering the phenomenological Paris law-and the microscopic damage accumulation exponent, gamma, under the influence of disorder. The way the jumps of the growing crack, Delta a, and the waiting time between successive breaks, Delta t, depend on the type of material, via gamma, are also investigated. We find that the averages of these quantities, <Delta a > and <Delta t >/< t(r)>, scale as power laws of the crack length a, <Delta a > proportional to a(alpha) and <Delta t >/< t(r)> proportional to a(-beta), where < t(r)> is the average rupture time. Strikingly, our results show, for small values of gamma, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of gamma = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation. Copyright (C) EPLA, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Because the mechanical behavior of the implant-abutment system is critical for the longevity of implant-supported reconstructions, this study evaluated the fatigue reliability of different implant-abutment systems used as single-unit crowns and their failure modes. Methods and Materials: Sixty-three Ti-6Al-4V implants were divided in 3 groups: Replace Select (RS); IC-IMP Osseotite; and Unitite were restored with their respective abutments. Anatomically correct central incisor metal crowns were cemented and subjected to separate single load to failure tests and step-stress accelerated life testing (n = 18). A master Weibull curve and reliability for a mission of 50,000 cycles at 200 N were calculated. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The load at failure mean values during step-stress accelerated life testing were 348.14 N for RS, 324.07 N for Osseotite, and 321.29 N for the Unitite systems. No differences in reliability levels were detected between systems, and only the RS system mechanical failures were shown to be accelerated by damage accumulation. Failure modes differed between systems. Conclusions: The 3 evaluated systems did not present significantly different reliability; however, failure modes were different. (Implant Dent 2012;21:67-71)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesive bonding provides solutions to realize cost effective and low weight aircraft fuselage structures, in particular where the Damage Tolerance (DT) is the design criterion. Bonded structures that combine Metal Laminates (MLs) and eventually Selective Reinforcements can guarantee slow crack propagation, crack arrest and large damage capability. To optimize the design exploiting the benefit of bonded structures incorporating selective reinforcement requires reliable analysis tools. The effect of bonded doublers / selective reinforcements is very difficult to be predicted numerically or analytically due to the complexity of the underlying mechanisms and failures modes acting. Reliable predictions of crack growth and residual strength can only be based on sound empirical and phenomenological considerations strictly related to the specific structural concept. Large flat stiffened panels that combine MLs and selective reinforcements have been tested with the purpose of investigating solutions applicable to pressurized fuselages. The large test campaign (for a total of 35 stiffened panels) has quantitatively investigated the role of the different metallic skin concepts (monolithic vs. MLs) of the aluminum, titanium and glass-fiber reinforcements, of the stringers material and cross sections and of the geometry and location of doublers / selective reinforcements. Bonded doublers and selective reinforcements confirmed to be outstanding tools to improve the DT properties of structural elements with a minor weight increase. However the choice of proper materials for the skin and the stringers must be not underestimated since they play an important role as well. A fuselage structural concept has been developed to exploit the benefit of a metal laminate design concept in terms of high Fatigue and Damage Tolerance (F&DT) performances. The structure used laminated skin (0.8mm thick), bonded stringers, two different splicing solutions and selective reinforcements (glass prepreg embedded in the laminate) under the circumferential frames. To validate the design concept a curved panel was manufactured and tested under loading conditions representative of a single aisle fuselage: cyclic internal pressurization plus longitudinal loads. The geometry of the panel, design and loading conditions were tailored for the requirements of the upper front fuselage. The curved panel has been fatigue tested for 60 000 cycles before the introduction of artificial damages (cracks in longitudinal and circumferential directions). The crack growth of the artificial damages has been investigated for about 85 000 cycles. At the end a residual strength test has been performed with a “2 bay over broken frame” longitudinal crack. The reparability of this innovative concept has been taken into account during design and demonstrated with the use of an external riveted repair. The F&DT curved panel test has confirmed that a long fatigue life and high damage tolerance can be achieved with a hybrid metal laminate low weight configuration. The superior fatigue life from metal laminates and the high damage tolerance characteristics provided by integrated selective reinforcements are the key concepts that provided the excellent performances. The weight comparison between the innovative bonded concept and a conventional monolithic riveted design solution showed a significant potential weight saving but the weight advantages shall be traded off with the additional costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of well-known literature, an analytical tool named LEAF (Linear Elastic Analysis of Fracture) was developed to predict the Damage Tolerance (DT) proprieties of aeronautical stiffened panels. The tool is based on the linear elastic fracture mechanics and the displacement compatibility method. By means of LEAF, an extensive parametric analysis of stiffened panels, representative of typical aeronautical constructions, was performed to provide meaningful design guidelines. The effects of riveted, integral and adhesively bonded stringers on the fatigue crack propagation performances of stiffened panels were investigated, as well as the crack retarder contribution using metallic straps (named doublers) bonded in the middle of the stringers bays. The effect of both perfectly bonded and partially debonded doublers was investigated as well. Adhesively bonded stiffeners showed the best DT properties in comparison with riveted and integral ones. A great reduction of the skin crack growth propagation rate can be achieved with the adoption of additional doublers bonded between the stringers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by the author to include fatigue effects is based essentially in Marigo (1985) and can be included in this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.