855 resultados para Faster convergence
Resumo:
Solution of generalized eigenproblem, K phi = lambda M phi, by the classical inverse iteration method exhibits slow convergence for some eigenproblems. In this paper, a modified inverse iteration algorithm is presented for improving the convergence rate. At every iteration, an optimal linear combination of the latest and the preceding iteration vectors is used as the input vector for the next iteration. The effectiveness of the proposed algorithm is demonstrated for three typical eigenproblems, i.e. eigenproblems with distinct, close and repeated eigenvalues. The algorithm yields 29, 96 and 23% savings in computational time, respectively, for these problems. The algorithm is simple and easy to implement, and this renders the algorithm even more attractive.
Resumo:
We present here a critical assessment of two vortex approaches (both two-dimensional) to the modelling of turbulent mixing layers. In the first approach the flow is represented by point vortices, and in the second it is simulated as the evolution of a continuous vortex sheet composed of short linear elements or ''panels''. The comparison is based on fresh simulations using approximately the same number of elements in either model, paying due attention in both to the boundary conditions far downstream as well as those on the splitter plate from which the mixing layer issues. The comparisons show that, while both models satisfy the well-known invariants of vortex dynamics approximately to the same accuracy, the vortex panel model, although ultimately not convergent, leads to smoother roll-up and values of stresses and moments that are in closer agreement with the experiment, and has a higher computational efficiency for a given degree of convergence on moments. The point vortex model, while faster for a given number of elements, produces an unsatisfactory roll-up which (for the number of elements used) is rendered worse by the incorporation of the Van der Vooren correction for sheet curvature.
Resumo:
Although the recently proposed single-implicit-equation-based input voltage equations (IVEs) for the independent double-gate (IDG) MOSFET promise faster computation time than the earlier proposed coupled-equations-based IVEs, it is not clear how those equations could be solved inside a circuit simulator as the conventional Newton-Raphson (NR)-based root finding method will not always converge due to the presence of discontinuity at the G-zero point (GZP) and nonremovable singularities in the trigonometric IVE. In this paper, we propose a unique algorithm to solve those IVEs, which combines the Ridders algorithm with the NR-based technique in order to provide assured convergence for any bias conditions. Studying the IDG MOSFET operation carefully, we apply an optimized initial guess to the NR component and a minimized solution space to the Ridders component in order to achieve rapid convergence, which is very important for circuit simulation. To reduce the computation budget further, we propose a new closed-form solution of the IVEs in the near vicinity of the GZP. The proposed algorithm is tested with different device parameters in the extended range of bias conditions and successfully implemented in a commercial circuit simulator through its Verilog-A interface.
Resumo:
For more than two hundred years, the world has discussed the issue of whether to continue the process of patenting or whether to do away with it. Developed countries remain polarized for various reasons but nevertheless the pro patent regime continued. The result was a huge volume of patents. The present article explains the implications of excessive volume of patents and conditions under which prior art search fails. This article highlights the importance and necessity of standardization efforts so as to bring about convergence of views on patenting.
Resumo:
We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.
Resumo:
Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1
Resumo:
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Resumo:
A class of model reference adaptive control system which make use of an augmented error signal has been introduced by Monopoli. Convergence problems in this attractive class of systems have been investigated in this paper using concepts from hyperstability theory. It is shown that the condition on the linear part of the system has to be stronger than the one given earlier. A boundedness condition on the input to the linear part of the system has been taken into account in the analysis - this condition appears to have been missed in the previous applications of hyperstability theory. Sufficient conditions for the convergence of the adaptive gain to the desired value are also given.
Resumo:
Vicsek et al. proposed a biologically inspired model of self-propelled particles, which is now commonly referred to as the Vicsek model. Recently, attention has been directed at modifying the Vicsek model so as to improve convergence properties. In this paper, we propose two modification of the Vicsek model which leads to significant improvements in convergence times. The modifications involve an additional term in the heading update rule which depends only on the current or the past states of the particle's neighbors. The variation in convergence properties as the parameters of these modified versions are changed are closely investigated. It is found that in both cases, there exists an optimal value of the parameter which reduces convergence times significantly and the system undergoes a phase transition as the value of the parameter is increased beyond this optimal value. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
Resumo:
Service systems are labor intensive. Further, the workload tends to vary greatly with time. Adapting the staffing levels to the workloads in such systems is nontrivial due to a large number of parameters and operational variations, but crucial for business objectives such as minimal labor inventory. One of the central challenges is to optimize the staffing while maintaining system steady-state and compliance to aggregate SLA constraints. We formulate this problem as a parametrized constrained Markov process and propose a novel stochastic optimization algorithm for solving it. Our algorithm is a multi-timescale stochastic approximation scheme that incorporates a SPSA based algorithm for ‘primal descent' and couples it with a ‘dual ascent' scheme for the Lagrange multipliers. We validate this optimization scheme on five real-life service systems and compare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of magnitude faster than OptQuest, our scheme is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees convergence and finds better solutions than OptQuest in many cases.
Resumo:
We consider the problem of finding the best features for value function approximation in reinforcement learning and develop an online algorithm to optimize the mean square Bellman error objective. For any given feature value, our algorithm performs gradient search in the parameter space via a residual gradient scheme and, on a slower timescale, also performs gradient search in the Grassman manifold of features. We present a proof of convergence of our algorithm. We show empirical results using our algorithm as well as a similar algorithm that uses temporal difference learning in place of the residual gradient scheme for the faster timescale updates.
Resumo:
We use the Bouguer coherence (Morlet isostatic response function) technique to compute the spatial variation of effective elastic thickness (T-e) of the Andaman subduction zone. The recovered T-e map resolves regional-scale features that correlate well with known surface structures of the subducting Indian plate and the overriding Burma plate. The major structure on the India plate, the Ninetyeast Ridge (NER), exhibits a weak mechanical strength, which is consistent with the expected signature of an oceanic ridge of hotspot origin. However, a markedly low strength (0< T-e <3 km) in that region, where the NER is close to the Andaman trench (north of 10 N), receives our main attention in this study. The subduction geometry derived from the Bouguer gravity forward modeling suggests that the NER has indented beneath the Andaman arc. We infer that the bending stresses of the viscous plate, which were reinforced within the subducting oceanic plate as a result of the partial subduction of the NER buoyant load, have reduced the lithospheric strength. The correlation, T-e < T-s (seismogenic thickness) reveals that the upper crust is actively deforming beneath the frontal arc Andaman region. The occurrence of normal-fault earthquakes in the frontal arc, low Te zone, is indicative of structural heterogeneities within the subducting plate. The fact that the NER along with its buoyant root is subducting under the Andaman region is inhibiting the subduction processes, as suggested by the changes in trench line, interrupted back-arc volcanism, variation in seismicity mechanism, slow subduction, etc. The low T-e and thinned crustal structure of the Andaman back-arc basin are attributed to a thermomechanically weakened lithosphere. The present study reveals that the ongoing back-arc spreading and strike-slip motion along the West Andaman Fault coupled with the ridge subduction exerts an important control on the frequency and magnitude of seismicity in the Andaman region. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.