969 resultados para False discovery rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

PTS1 proteins are peroxisomal matrix proteins that have a well conserved targeting motif at the C-terminal end. However, this motif is present in many non peroxisomal proteins as well, thus predicting peroxisomal proteins involves differentiating fake PTS1 signals from actual ones. In this paper we report on the development of an SVM classifier with a separately trained logistic output function. The model uses an input window containing 12 consecutive residues at the C-terminus and the amino acid composition of the full sequence. The final model gives a Matthews Correlation Coefficient of 0.77, representing an increase of 54% compared with the well-known PeroxiP predictor. We test the model by applying it to several proteomes of eukaryotes for which there is no evidence of a peroxisome, producing a false positive rate of 0.088%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62P10, 92D10, 92D30, 94A17, 62L10.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074 Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation develops an innovative approach towards less-constrained iris biometrics. Two major contributions are made in this research endeavor: (1) Designed an award-winning segmentation algorithm in the less-constrained environment where image acquisition is made of subjects on the move and taken under visible lighting conditions, and (2) Developed a pioneering iris biometrics method coupling segmentation and recognition of the iris based on video of moving persons under different acquisitions scenarios. The first part of the dissertation introduces a robust and fast segmentation approach using still images contained in the UBIRIS (version 2) noisy iris database. The results show accuracy estimated at 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at 97% in a Noisy Iris Challenge Evaluation (NICE.I) in an international competition that involved 97 participants worldwide involving 35 countries, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time. The second part of this dissertation presents an innovative segmentation and recognition approach using video-based iris images. Following the segmentation stage which delineates the iris region through a novel segmentation strategy, some pioneering experiments on the recognition stage of the less-constrained video iris biometrics have been accomplished. In the video-based and less-constrained iris recognition, the test or subject iris videos/images and the enrolled iris images are acquired with different acquisition systems. In the matching step, the verification/identification result was accomplished by comparing the similarity distance of encoded signature from test images with each of the signature dataset from the enrolled iris images. With the improvements gained, the results proved to be highly accurate under the unconstrained environment which is more challenging. This has led to a false acceptance rate (FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 tested users with 305 test images from the video, which shows great promise and high practical implications for iris biometrics research and system design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Weakly electric fish produce a dual function electric signal that makes them ideal models for the study of sensory computation and signal evolution. This signal, the electric organ discharge (EOD), is used for communication and navigation. In some families of gymnotiform electric fish, the EOD is a dynamic signal that increases in amplitude during social interactions. Amplitude increase could facilitate communication by increasing the likelihood of being sensed by others or by impressing prospective mates or rivals. Conversely, by increasing its signal amplitude a fish might increase its sensitivity to objects by lowering its electrolocation detection threshold. To determine how EOD modulations elicited in the social context affect electrolocation, I developed an automated and fast method for measuring electroreception thresholds using a classical conditioning paradigm. This method employs a moving shelter tube, which these fish occupy at rest during the day, paired with an electrical stimulus. A custom built and programmed robotic system presents the electrical stimulus to the fish, slides the shelter tube requiring them to follow, and records video of their movements. I trained the electric fish of the genus Sternopygus was trained to respond to a resistive stimulus on this apparatus in 2 days. The motion detection algorithm correctly identifies the responses 91% of the time, with a false positive rate of only 4%. This system allows for a large number of trials, decreasing the amount of time needed to determine behavioral electroreception thresholds. This novel method enables the evaluation the evolutionary interplay between two conflicting sensory forces, social communication and navigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: PCR detects clonal rearrangements of the Ig gene in lymphoproliferative disorders. False negativity occurs in germinal centre/post-germinal centre lymphomas (GC/PGCLs) as they display a high rate of somatic hypermutation (SHM), which causes primer mismatching when detecting Ig rearrangements by PCR. AIMS: To investigate the degree of SHM in a group of GC/PGCLs and assess the rate of false negativity when using BIOMED-2 PCR when compared with previously published strategies. METHODS: DNA was isolated from snap-frozen tissue from 49 patients with GC/PGCL (23 diffuse large B cell lymphomas (DLBCLs), 26 follicular lymphomas (FLs)) and PCR-amplified for complete (VDJH), incomplete (DJH) and Ig kappa/lambda rearrangements using the BIOMED-2 protocols, and compared with previously published methods using consensus primers. Germinal centre phenotype was defined by immunohistochemistry based on CD10, Bcl-6 and MUM-1. RESULTS: Clonality detection by amplifying Ig rearrangements using BIOMED-2 family-specific primers was considerably higher than that found using consensus primers (74% DLBCL and 96% FL vs 69% DLBCL and 73% FL). Addition of BIOMED-2 DJH rearrangements increased detection of clonality by 22% in DLBCL. SHM was present in VDJH rearrangements from all patients with DLBCL (median (range) 5.7% (2.5-13.5)) and FL (median (range) 5.3% (2.3-11.9)) with a clonal rearrangement. CONCLUSIONS: Use of BIOMED-2 primers has significantly reduced the false negative rate associated with GC/PGCL when compared with consensus primers, and the inclusion of DJH rearrangements represents a potential complementary target for clonality assessment, as SHM is thought not to occur in these types of rearrangements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Constant false alarm rate (CFAR) techniques can be used in Pseudo-Noise (PN) code acquisition in Spread Spectrum (SS) communication systems, and all the CFAR techniques perform well in homogeneous background PN code acquisition. However, in non-homogeneous background, some CFAR techniques suffer rapid degradation. GO/SO (Greatest-of/Smallest-of) CFAR and adaptive censored mean level detector (ACMLD) are two adaptive CFAR techniques, which are analyzed and compared with other CFAR techniques. The simulation results show that GO/SO CFAR is superior to other CFAR techniques, it maintains short mean acquisition time (MAT) even at environment with strong clutter noise, and ACMLD is suitable for background with strong interfering targets