888 resultados para Face recognition makeup riconoscimento volto immagini trucco alterazione


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many methods based on biometrics such as fingerprint, face, iris, and retina have been proposed for person identification. However, for deceased individuals, such biometric measurements are not available. In such cases, parts of the human skeleton can be used for identification, such as dental records, thorax, vertebrae, shoulder, and frontal sinus. It has been established in prior investigations that the radiographic pattern of frontal sinus is highly variable and unique for every individual. This has stimulated the proposition of measurements of the frontal sinus pattern, obtained from x-ray films, for skeletal identification. This paper presents a frontal sinus recognition method for human identification based on Image Foresting Transform and shape context. Experimental results (ERR = 5,82%) have shown the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notizie riguardanti scandali relativi al utilizzo inappropriato di contrassegni per disabili sono all’ordine del giorno. Situazioni meno popolari dal punto di vista mediatico, ma altrettanto gravi a livello sociale coinvolgono tutti quegli individui che si prodigano a falsificare contrassegni oppure ad utilizzarli anche in mancanza del disabile, eventualmente anche successivamente al decesso del medesimo. Tutto questo va inevitabilmente a discapito di tutti coloro che hanno reale diritto e necessità di usufruire delle agevolazioni. Lo scopo di questa tesi è quindi quello di illustrare un possibile sistema per contrastare e possibilmente debellare questo malcostume diffusissimo in Italia. La proposta è quella di dematerializzare il pass cartaceo sostituendolo con un equiva- lente elettronico, temporaneo e associato non più ad una targa, ma all’individuo stesso. Per farlo si ricorrerà all’uso di tecniche di autenticazione attraverso sistemi biometrici, quali il riconoscimento facciale, vocale, di espressioni facciali e gestures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise role of the fusiform face area (FFA) in face processing remains controversial. In this study, we investigated to what degree FFA activation reflects additional functions beyond face perception. Seven volunteers underwent rapid event-related functional magnetic resonance imaging while they performed a face-encoding and a face-recognition task. During face encoding, activity in the FFA for individual faces predicted whether the individual face was subsequently remembered or forgotten. However, during face recognition, no difference in FFA activity between consciously remembered and forgotten faces was observed, but the activity of FFA differentiated if a face had been seen previously or not. This demonstrated a dissociation between overt recognition and unconscious discrimination of stimuli, suggesting that physiological processes of face recognition can take place, even if not all of its operations are made available to consciousness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because faces and bodies share some abstract perceptual features, we hypothesised that similar recognition processes might be used for both. We investigated whether similar caricature effects to those found in facial identity and expression recognition could be found in the recognition of individual bodies and socially meaningful body positions. Participants were trained to name four body positions (anger, fear, disgust, sadness) and four individuals (in a neutral position). We then tested their recognition of extremely caricatured, moderately caricatured, anticaricatured, and undistorted images of each stimulus. Consistent with caricature effects found in face recognition, moderately caricatured representations of individuals' bodies were recognised more accurately than undistorted and extremely caricatured representations. No significant difference was found between participants' recognition of extremely caricatured, moderately caricatured, or undistorted body position line-drawings. AU anti-caricatured representations were named significandy less accurately than the veridical stimuli. Similar mental representations may be used for both bodies and faces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar animals, artifacts, and newly learned multipart objects, which had been manipulated either in terms of individual parts or part relations. Manipulation of part relations was constrained to either metric (animals, artifacts, and multipart objects) or categorical (multipart objects only) changes. For animals and artifacts, even the youngest children were close to adult levels for the correct recognition of an individual part change. By contrast, it was not until 11-12 years of age that they achieved similar levels of performance with regard to altered metric part relations. For the newly learned multipart objects, performance was equivalent throughout the tested age range for upright presented stimuli in the case of categorical part-specific and part-relational changes. In the case of metric manipulations, the results confirmed the data pattern observed for animals and artifacts. Together, the results provide converging evidence, with studies of face recognition, for a surprisingly late consolidation of configural-metric relative to part-based object recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Facial image processing is becoming widespread in human-computer applications, despite its complexity. High-level processes such as face recognition or gender determination rely on low-level routines that must e ectively detect and normalize the faces that appear in the input image. In this paper, a face detection and normalization system is described. The approach taken is based on a cascade of fast, weak classi ers that together try to determine whether a frontal face is present in the image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevalent face recognition difficulties in Alzheimer’s disease (AD) have typically been attributed to the underlying episodic and semantic memory impairment. The aim of the current study was to determine if AD patients are also impaired at the perceptual level for faces, more specifically at extracting a visual representation of an individual face. To address this question, we investigated the matching of simultaneously presented individual faces and of other nonface familiar shapes (cars), at both upright and inverted orientation, in a group of mild AD patients and in a group of healthy older controls matched for age and education. AD patients showed a reduced inversion effect (i.e., larger performance for upright than inverted stimuli) for faces, but not for cars, both in terms of error rates and response times. While healthy participants showed a much larger decrease in performance for faces than for cars with inversion, the inversion effect did not differ significantly for faces and cars in AD. This abnormal inversion effect for faces was observed in a large subset of individual patients with AD. These results suggest that AD patients have deficits in higher-level visual processes, more specifically at perceiving individual faces, a function that relies on holistic representations specific to upright face stimuli. These deficits, combined with their memory impairment, may contribute to the difficulties in recognizing familiar people that are often reported in patients suffering from the disease and by their caregivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For robots to operate in human environments they must be able to make their own maps because it is unrealistic to expect a user to enter a map into the robot’s memory; existing floorplans are often incorrect; and human environments tend to change. Traditionally robots have used sonar, infra-red or laser range finders to perform the mapping task. Digital cameras have become very cheap in recent years and they have opened up new possibilities as a sensor for robot perception. Any robot that must interact with humans can reasonably be expected to have a camera for tasks such as face recognition, so it makes sense to also use the camera for navigation. Cameras have advantages over other sensors such as colour information (not available with any other sensor), better immunity to noise (compared to sonar), and not being restricted to operating in a plane (like laser range finders). However, there are disadvantages too, with the principal one being the effect of perspective. This research investigated ways to use a single colour camera as a range sensor to guide an autonomous robot and allow it to build a map of its environment, a process referred to as Simultaneous Localization and Mapping (SLAM). An experimental system was built using a robot controlled via a wireless network connection. Using the on-board camera as the only sensor, the robot successfully explored and mapped indoor office environments. The quality of the resulting maps is comparable to those that have been reported in the literature for sonar or infra-red sensors. Although the maps are not as accurate as ones created with a laser range finder, the solution using a camera is significantly cheaper and is more appropriate for toys and early domestic robots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of improving the security of biometric templates which satisfies desirable properties such as (a) irreversibility of the template, (b) revocability and assignment of a new template to the same biometric input, (c) matching in the secure transformed domain is presented. It makes use of an iterative procedure based on the bispectrum that serves as an irreversible transformation for biometric features because signal phase is discarded each iteration. Unlike the usual hash function, this transformation preserves closeness in the transformed domain for similar biometric inputs. A number of such templates can be generated from the same input. These properties are illustrated using synthetic data and applied to images from the FRGC 3D database with Gabor features. Verification can be successfully performed using these secure templates with an EER of 5.85%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eigen-based techniques and other monolithic approaches to face recognition have long been a cornerstone in the face recognition community due to the high dimensionality of face images. Eigen-face techniques provide minimal reconstruction error and limit high-frequency content while linear discriminant-based techniques (fisher-faces) allow the construction of subspaces which preserve discriminatory information. This paper presents a frequency decomposition approach for improved face recognition performance utilising three well-known techniques: Wavelets; Gabor / Log-Gabor; and the Discrete Cosine Transform. Experimentation illustrates that frequency domain partitioning prior to dimensionality reduction increases the information available for classification and greatly increases face recognition performance for both eigen-face and fisher-face approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated feature extraction and correspondence determination is an extremely important problem in the face recognition community as it often forms the foundation of the normalisation and database construction phases of many recognition and verification systems. This paper presents a completely automatic feature extraction system based upon a modified volume descriptor. These features form a stable descriptor for faces and are utilised in a reversible jump Markov chain Monte Carlo correspondence algorithm to automatically determine correspondences which exist between faces. The developed system is invariant to changes in pose and occlusion and results indicate that it is also robust to minor face deformations which may be present with variations in expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial landmarks play an important role in face recognition. They serve different steps of the recognition such as pose estimation, face alignment, and local feature extraction. Recently, cascaded shape regression has been proposed to accurately locate facial landmarks. A large number of weak regressors are cascaded in a sequence to fit face shapes to the correct landmark locations. In this paper, we propose to improve the method by applying gradual training. With this training, the regressors are not directly aimed to the true locations. The sequence instead is divided into successive parts each of which is aimed to intermediate targets between the initial and the true locations. We also investigate the incorporation of pose information in the cascaded model. The aim is to find out whether the model can be directly used to estimate head pose. Experiments on the Annotated Facial Landmarks in the Wild database have shown that the proposed method is able to improve the localization and give accurate estimates of pose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques to improve the automated analysis of natural and spontaneous facial expressions have been developed. The outcome of the research has applications in several fields including national security (eg: expression invariant face recognition); education (eg: affect aware interfaces); mental and physical health (eg: depression and pain recognition).